GW190425—First discovery from O3

The first gravitational wave detection of LIGO and Virgo’s third observing run (O3) has been announced: GW190425! [bonus note] The signal comes from the inspiral of two objects which have a combined mass of about 3.4 times the mass of our Sun. These masses are in range expected for neutron stars, this makes GW190425 the second observation of gravitational waves from a binary neutron star inspiral (after GW170817). While the individual masses of the two components agree with the masses of neutron stars found in binaries, the overall mass of the binary (times the mass of our Sun) is noticeably larger than any previously known binary neutron star system. GW190425 may be the first evidence for multiple ways of forming binary neutron stars.

The gravitational wave signal

On 25 April 2019 the LIGO–Virgo network observed a signal. This was promptly shared with the world as candidate event S190425z [bonus note]. The initial source classification was as a binary neutron star. This caused a flurry of excitement in the astronomical community [bonus note], as the smashing together of two neutron stars should lead to the emission of light. Unfortunately, the sky localization was HUGE (the initial 90% area wass about a quarter of the sky, and the refined localization provided the next day wasn’t much improvement), and the distance was four times that of GW170817 (meaning that any counterpart would be about 16 times fainter). Covering all this area is almost impossible. No convincing counterpart has been found [bonus note].

Preliminary sky map for GW190425

Early sky localization for GW190425. Darker areas are more probable. This localization was circulated in GCN 24228 on 26 April and was used to guide follow-up, even though it covers a huge amount of the sky (the 90% area is about 18% of the sky).

The localization for GW19045 was so large because LIGO Hanford (LHO) was offline at the time. Only LIGO Livingston (LLO) and Virgo were online. The Livingston detector was about 2.8 times more sensitive than Virgo, so pretty much all the information came from Livingston. I’m looking forward to when we have a larger network of detectors at comparable sensitivity online (we really need three detectors observing for a good localization).

We typically search for gravitational waves by looking for coincident signals in our detectors. When looking for binaries, we have templates for what the signals look like, so we match these to the data and look for good overlaps. The overlap is quantified by the signal-to-noise ratio. Since our detectors contains all sorts of noise, you’d expect them to randomly match templates from time to time. On average, you’d expect the signal-to-noise ratio to be about 1. The higher the signal-to-noise ratio, the less likely that a random noise fluctuation could account for this.

Our search algorithms don’t just rely on the signal-to-noise ratio. The complication is that there are frequently glitches in our detectors. Glitches can be extremely loud, and so can have a significant overlap with a template, even though they don’t look anything like one. Therefore, our search algorithms also look at the overlap for different parts of the template, to check that these match the expected distribution (for example, there’s not one bit which is really loud, while the others don’t match). Each of our different search algorithms has their own way of doing this, but they are largely based around the ideas from Allen (2005), which is pleasantly readable if you like these sort of things. It’s important to collect lots of data so that we know the expected distribution of signal-to-noise ratio and signal-consistency statistics (sometimes things change in our detectors and new types of noise pop up, which can confuse things).

It is extremely important to check the state of the detectors at the time of an event candidate. In O3, we have unfortunately had to retract various candidate events after we’ve identified that our detectors were in a disturbed state. The signal consistency checks take care of most of the instances, but they are not perfect. Fortunately, it is usually easy to identify that there is a glitch—the difficult question is whether there is a glitch on top of a signal (as was the case for GW170817).  Our checks revealed nothing up with the detectors which could explain the signal (there was a small glitch in Livingston about 60 seconds before the merger time, but this doesn’t overlap with the signal).

Now, the search that identified GW190425 was actually just looking for single-detector events: outliers in the distribution of signal-to-noise ratio and signal-consistency as expected for signals. This was a Good Thing™. While the signal-to-noise ratio in Livingston was 12.9 (pretty darn good), the signal-to-noise ration in Virgo was only 2.5 (pretty meh) [bonus note]. This is below the threshold (signal-to-noise ratio of 4) the search algorithms use to look for coincidences (a threshold is there to cut computational expense: the lower the threshold, the more triggers need to be checked) [bonus note]. The Bad Thing™ about GW190425 being found by the single-detector search, and being missed by the usual multiple detector search, is that it is much harder to estimate the false-alarm rate—it’s much harder to rule out the possibility of some unusual noise when you don’t have another detector to cross-reference against. We don’t have a final estimate for the significance yet. The initial estimate was 1 in 69,000 years (which relies on significant extrapolation). What we can be certain of is that this event is a noticeable outlier: across the whole of O1, O2 and the first 50 days of O3, it comes second only to GW170817. In short, we can say that GW190425 is worth betting on, but I’m not sure (yet) how heavily you want to bet.

Comparison of GW190425 to O1, O2 and start of O3 data

Detection statistics for GW190425 showing how it stands out from the background. The left plot shows the signal-to-noise ratio (SNR) and signal-consistency statistic from the GstLAL algorithm, which made the detection. The coloured density plot shows the distribution of background triggers. Right shows the detection statistic from PyCBC, which combines the SNR and their signal-consistency statistic. The lines show the background distributions. GW190425 is more significant than everything apart from GW170817. Adapted from Figures 1 and 6 of the GW190425 Discovery Paper.

I’m always cautious of single-detector candidates. If you find a high-mass binary black hole (which would be an extremely short template), or something with extremely high spins (indicating that the templates don’t match unless you push to the bounds of what is physical), I would be suspicious. Here, we do have consistent Virgo data, which is good for backing up what is observed in Livingston. It may be a single-detector detection, but it is a multiple-detector observation. To further reassure ourselves about GW190425, we ran our full set of detection algorithms on the Livingston data to check that they all find similar signals, with reasonable signal-consistency test values. Indeed, they do! The best explanation for the data seems to be a gravitational wave.

The source

Given that we have a gravitational wave, where did it come from? The best-measured property of a binary inspiral is its chirp mass—a particular combination of the two component masses. For GW190425, this is 1.44^{+0.02}_{-0.02} solar masses (quoting the 90% range for parameters). This is larger than GW170817’s 1.186^{+0.001}_{-0.001} solar masses: we have a heavier binary.

Binary component masses

Estimated masses for the two components in the binary. We show results for two different spin limits. The two-dimensional shows the 90% probability contour, which follows a line of constant chirp mass. The one-dimensional plot shows individual masses; the dotted lines mark 90% bounds away from equal mass. The masses are in the range expected for neutron stars. Figure 3 of the GW190425 Discovery Paper.

Figuring out the component masses is trickier. There is a degeneracy between the spins and the mass ratio—by increasing the spins of the components it is possible to get more extreme mass ratios to fit the signal. As we did for GW170817, we quote results with two ranges of spins. The low-spin results use a maximum spin of 0.05, which matches the range of spins we see for binary neutron stars in our Galaxy, while the high-spin results use a limit of 0.89, which safely encompasses the upper limit for neutron stars (if they spin faster than about 0.7 they’ll tear themselves apart). We find that the heavier component of the binary has a mass of 1.621.88 solar masses with the low-spin assumption, and 1.612.52 solar masses with the high-spin assumption; the lighter component has a mass 1.451.69 solar masses with the low-spin assumption, and 1.121.68 solar masses with the high-spin. These are the range of masses expected for neutron stars.

Without an electromagnetic counterpart, we cannot be certain that we have two neutron stars. We could tell from the gravitational wave by measuring the imprint in the signal left by the tidal distortion of the neutron star. Black holes have a tidal deformability of 0, so measuring a nonzero tidal deformability would be the smoking gun that we have a neutron star. Unfortunately, the signal isn’t loud enough to find any evidence of these effects. This isn’t surprising—we couldn’t say anything for GW170817, without assuming its source was a binary neutron star, and GW170817 was louder and had a lower mass source (where tidal effects are easier to measure). We did check—it’s probably not the case that the components were made of marshmallow, but there’s not much more we can say (although we can still make pretty simulations). It would be really odd to have black holes this small, but we can’t rule out than at least one of the components was a black hole.

Two binary neutron stars is the most likely explanation for GW190425. How does it compare to other binary neutron stars? Looking at the 17 known binary neutron stars in our Galaxy, we see that GW190425’s source is much heavier. This is intriguing—could there be a different, previously unknown formation mechanism for this binary? Perhaps the survey of Galactic binary neutron stars (thanks to radio observations) is incomplete? Maybe the more massive binaries form in close binaries, which are had to spot in the radio (as the neutron star moves so quickly, the radio signals gets smeared out), or maybe such heavy binaries only form from stars with low metallicity (few elements heavier than hydrogen and helium) from earlier in the Universe’s history, so that they are no longer emitting in the radio today? I think it’s too early to tell—but it’s still fun to speculate. I expect there’ll be a flurry of explanations out soon.

Galactic binary neutron stars and GW190425

Comparison of the total binary mass of the 10 known binary neutron stars in our Galaxy that will merge within a Hubble time and GW190425’s source (with both the high-spin and low-spin assumptions). We also show a Gaussian fit to the Galactic binaries. GW190425’s source is higher mass than previously known binary neutron stars. Figure 5 of the GW190425 Discovery Paper.

Since the source seems to be an outlier in terms of mass compared to the Galactic population, I’m a little cautious about using the low-spin results—if this sample doesn’t reflect the full range of masses, perhaps it doesn’t reflect the full range of spins too? I think it’s good to keep an open mind. The fastest spinning neutron star we know of has a spin of around 0.4, maybe binary neutron star components can spin this fast in binaries too?

One thing we can measure is the distance to the source: 160^{+70}_{-70}~\mathrm{Mpc}. That means the signal was travelling across the Universe for about half a billion years. This is as many times bigger than diameter of Earth’s orbit about the Sun, as the diameter of the orbit is than the height of a LEGO brick. Space is big.

We have now observed two gravitational wave signals from binary neutron stars. What does the new observation mean for the merger rate of binary neutron stars? To go from an observed number of signals to how many binaries are out there in the Universe we need to know how sensitive our detectors are to the sources. This depends on  the masses of the sources, since more massive binaries produce louder signals. We’re not sure of the mass distribution for binary neutron stars yet. If we assume a uniform mass distribution for neutron stars between 0.8 and 2.3 solar masses, then at the end of O2 we estimated a merger rate of 1102520~\mathrm{Gpc^{-3}\,\mathrm{yr}^{-3}}. Now, adding in the first 50 days of O3, we estimate the rate to be 2502470~\mathrm{Gpc^{-3}\,\mathrm{yr}^{-3}}, so roughly the same (which is nice) [bonus note].

Since GW190425’s source looks rather different from other neutron stars, you might be interested in breaking up the merger rates to look at different classes. Using measured masses, we can construct rates for GW170817-like (matching the usual binary neutron star population) and GW190425-like binaries (we did something similar for binary black holes after our first detection). The GW170817-like rate is 1102500~\mathrm{Gpc^{-3}\,\mathrm{yr}^{-3}}, and the GW190425-like rate is lower at 704600~\mathrm{Gpc^{-3}\,\mathrm{yr}^{-3}}. Combining the two (Assuming that binary neutron stars are all one class or the other), gives an overall rate of 2902810~\mathrm{Gpc^{-3}\,\mathrm{yr}^{-3}}, which is not too different than assuming the uniform distribution of masses.

Given these rates, we might expect some more nice binary neutron star signals in the O3 data. There is a lot of science to come.

Future mysteries

GW190425 hints that there might be a greater variety of binary neutron stars out there than previously thought. As we collect more detections, we can start to reconstruct the mass distribution. Using this, together with the merger rate, we can start to pin down the details of how these binaries form.

As we find more signals, we should also find a few which are loud enough to measure tidal effects. With these, we can start to figure out the properties of the Stuff™ which makes up neutron stars, and potentially figure out if there are small black holes in this mass range. Discovering smaller black holes would be extremely exciting—these wouldn’t be formed from collapsing stars, but potentially could be remnants left over from the early Universe.

Neutron star masses and radii for GW190425

Probability distributions for neutron star masses and radii (blue for the more massive neutron star, orange for the lighter), assuming that GW190425’s source is a binary neutron star. The left plots use the high-spin assumption, the right plots use the low-spin assumptions. The top plots use equation-of-state insensitive relations, and the bottom use parametrised equation-of-state models incorporating the requirement that neutron stars can be 1.97 solar masses. Similar analyses were done in the GW170817 Equation-of-state Paper. In the one-dimensional plots, the dashed lines indicate the priors. Figure 16 of the GW190425 Discovery Paper.

With more detections (especially when we have more detectors online), we should also be lucky enough to have a few which are well localised. These are the events when we are most likely to find an electromagnetic counterpart. As our gravitational-wave detectors become more sensitive, we can detect sources further out. These are much harder to find counterparts for, so we mustn’t expect every detection to have a counterpart. However, for nearby sources, we will be able to localise them better, and so increase our odds of finding a counterpart. From such multimessenger observations we can learn a lot. I’m especially interested to see how typical GW170817 really was.

O3 might see gravitational wave detection becoming routine, but that doesn’t mean gravitational wave astronomy is any less exciting!

Title: GW190425: Observation of a compact binary coalescence with total mass ~ 3.4 solar masses
Journal: Astrophysical Journal Letters; 892(1):L3(24); 2020
arXiv: arXiv:2001.01761 [astro-ph.HE] [bonus note]
Science summary: GW190425: The heaviest binary neutron star system ever seen?
Data release: Gravitational Wave Open Science Center; Parameter estimation results
Rating: 🥇😮🥂🥇

Bonus notes

Exceptional events

The plan for publishing papers in O3 is that we would write a paper for any particularly exciting detections (such as a binary neutron star), and then put out a catalogue of all our results later. The initial discovery papers wouldn’t be the full picture, just the key details so that the entire community could get working on them. Our initial timeline was to get the individual papers out in four months—that’s not going so well, it turns out that the most interesting events have lots of interesting properties, which take some time to understand. Who’d have guessed?

We’re still working on getting papers out as soon as possible. We’ll be including full analyses, including results which we can’t do on these shorter timescales in our catalogue papers. The catalogue paper for the first half of O3 (O3a) is currently pencilled in for April 2020.

Naming conventions

The name of a gravitational wave signal is set by the date it is observed. GW190425 is hence the gravitational wave (GW) observed on 2019 April 25th. Our candidates alerts don’t start out with the GW prefix, as we still need to do lots of work to check if they are real. Their names start with S for superevent (not for hope) [bonus bonus note], then the date, and then a letter indicating the order it was uploaded to our database of candidates (we upload candidates with false alarm rates of around one per hour, so there are multiple database entries per day, and most are false alarms). S190425z was the 26th superevent uploaded on 2019 April 25th.

What is a superevent? We call anything flagged by our detection pipelines an event. We have multiple detection pipelines, and often multiple pipelines produce events for the same stretch of data (you’d expect this to happen for real signals). It was rather confusing having multiple events for the same signal (especially when trying to quickly check a candidate to issue an alert), so in O3 we group together events from similar times into SUPERevents.

GRB 190425?

Pozanenko et al. (2019) suggest a gamma-ray burst observed by INTEGRAL (first reported in GCN 24170). The INTEGRAL team themselves don’t find anything in their data, and seem sceptical of the significance of the detection claim. The significance of the claim seems to be based on there being two peaks in the data (one about 0.5 seconds after the merger, one 5.9 seconds after the merger), but I’m not convinced why this should be the case. Nothing was observed by Fermi, which is possibly because the source was obscured by the Earth for them. I’m interested in seeing more study of this possible gamma-ray burst.

EMMA 2019

At the time of GW190425, I was attending the first day of the Enabling Multi-Messenger Astrophysics in the Big Data Era Workshop. This was a meeting bringing together many involved in the search for counterparts to gravitational wave events. The alert for S190425z cause some excitement. I don’t think there was much sleep that week.

Signal-to-noise ratio ratios

The signal-to-noise ratio reported from our search algorithm for LIGO Livingston is 12.9, and the same code gives 2.5 for Virgo. Virgo was about 2.8 times less sensitive that Livingston at the time, so you might be wondering why we have a signal-to-noise ratio of 2.8, instead of 4.6? The reason is that our detectors are not equally sensitive in all directions. They are most sensitive directly to sources directly above and below, and less sensitive to sources from the sides. The relative signal-to-noise ratios, together with the time or arrival at the different detectors, helps us to figure out the directions the signal comes from.

Detection thresholds

In O2, GW170818 was only detected by GstLAL because its signal-to-noise ratios in Hanford and Virgo (4.1 and 4.2 respectively) were below the threshold used by PyCBC for their analysis (in O2 it was 5.5). Subsequently, PyCBC has been rerun on the O2 data to produce the second Open Gravitational-wave Catalog (2-OGC). This is an analysis performed by PyCBC experts both inside and outside the LIGO Scientific & Virgo Collaboration. For this, a threshold of 4 was used, and consequently they found GW170818, which is nice.

I expect that if the threshold for our usual multiple-detector detection pipelines were lowered to ~2, they would find GW190425. Doing so would make the analysis much trickier, so I’m not sure if anyone will ever attempt this. Let’s see. Perhaps the 3-OGC team will be feeling ambitious?

Rates calculations

In comparing rates calculated for this papers and those from our end-of-O2 paper, my student Chase Kimball (who calculated the new numbers) would like me to remember that it’s not exactly an apples-to-apples comparison. The older numbers evaluated our sensitivity to gravitational waves by doing a large number of injections: we simulated signals in our data and saw what fraction of search algorithms could pick out. The newer numbers used an approximation (using a simple signal-to-noise ratio threshold) to estimate our sensitivity. Performing injections is computationally expensive, so we’re saving that for our end-of-run papers. Given that we currently have only two detections, the uncertainty on the rates is large, and so we don’t need to worry too much about the details of calculating the sensitivity. We did calibrate our approximation to past injection results, so I think it’s really an apples-to-pears-carved-into-the-shape-of-apples comparison.

Paper release

The original plan for GW190425 was to have the paper published before the announcement, as we did with our early detections. The timeline neatly aligned with the AAS meeting, so that seemed like an good place to make the announcement. We managed to get the the paper submitted, and referee reports back, but we didn’t quite get everything done in time for the AAS announcement, so Plan B was to have the paper appear on the arXiv just after the announcement. Unfortunately, there was a problem uploading files to the arXiv (too large), and by the time that was fixed the posting deadline had passed. Therefore, we went with Plan C or sharing the paper on the LIGO DCC. Next time you’re struggling to upload something online, remember that it happens to Nobel-Prize winning scientific collaborations too.

On the question of when it is best to share a paper, I’m still not decided. I like the idea of being peer-reviewed before making a big splash in the media. I think it is important to show that science works by having lots of people study a topic, before coming to a consensus. Evidence needs to be evaluated by independent experts. On the other hand, engaging the entire community can lead to greater insights than a couple of journal reviewers, and posting to arXiv gives opportunity to make adjustments before you having the finished article.

I think I am leaning towards early posting in general—the amount of internal review that our Collaboration papers receive, satisfies my requirements that scientists are seen to be careful, and I like getting a wider range of comments—I think this leads to having the best paper in the end.

S

The joke that S stands for super, not hope is recycled from an article I wrote for the LIGO Magazine. The editor, Hannah Middleton wasn’t sure that many people would get the reference, but graciously printed it anyway. Did people get it, or do I need to fly around the world really fast?

Advertisement

The O2 Catalogue—It goes up to 11

The full results of our second advanced-detector observing run (O2) have now been released—we’re pleased to announce four new gravitational wave signals: GW170729, GW170809, GW170818 and GW170823 [bonus note]. These latest observations are all of binary black hole systems. Together, they bring our total to 10 observations of binary black holes, and 1 of a binary neutron star. With more frequent detections on the horizon with our third observing run due to start early 2019, the era of gravitational wave astronomy is truly here.

Black hole and neutron star masses

The population of black holes and neutron stars observed with gravitational waves and with electromagnetic astronomy. You can play with an interactive version of this plot online.

The new detections are largely consistent with our previous findings. GW170809, GW170818 and GW170823 are all similar to our first detection GW150914. Their black holes have masses around 20 to 40 times the mass of our Sun. I would lump GW170104 and GW170814 into this class too. Although there were models that predicted black holes of these masses, we weren’t sure they existed until our gravitational wave observations. The family of black holes continues out of this range. GW151012, GW151226 and GW170608 fall on the lower mass side. These overlap with the population of black holes previously observed in X-ray binaries. Lower mass systems can’t be detected as far away, so we find fewer of these. On the higher end we have GW170729 [bonus note]. Its source is made up of black holes with masses 50.2^{+16.2}_{-10.2} M_\odot and 34.0^{+9.1}_{-10.1} M_\odot (where M_\odot is the mass of our Sun). The larger black hole is a contender for the most massive black hole we’ve found in a binary (the other probable contender is GW170823’s source, which has a 39.5^{+11.2}_{-6.7} M_\odot black hole). We have a big happy family of black holes!

Of the new detections, GW170729, GW170809 and GW170818 were both observed by the Virgo detector as well as the two LIGO detectors. Virgo joined O2 for an exciting August [bonus note], and we decided that the data at the time of GW170729 were good enough to use too. Unfortunately, Virgo wasn’t observing at the time of GW170823. GW170729 and GW170809 are very quiet in Virgo, you can’t confidently say there is a signal there [bonus note]. However, GW170818 is a clear detection like GW170814. Well done Virgo!

Using the collection of results, we can start understand the physics of these binary systems. We will be summarising our findings in a series of papers. A huge amount of work went into these.

The papers

The O2 Catalogue Paper

Title: GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs
arXiv:
 1811.12907 [astro-ph.HE]
Data: Catalogue; Parameter estimation results
Journal: Physical Review X; 9(3):031040(49); 2019
LIGO science summary: GWTC-1: A new catalog of gravitational-wave detections

The paper summarises all our observations of binaries to date. It covers our first and second observing runs (O1 and O2). This is the paper to start with if you want any information. It contains estimates of parameters for all our sources, including updates for previous events. It also contains merger rate estimates for binary neutron stars and binary black holes, and an upper limit for neutron star–black hole binaries. We’re still missing a neutron star–black hole detection to complete the set.

More details: The O2 Catalogue Paper

The O2 Populations Paper

Title: Binary black hole population properties inferred from the first and second observing runs of Advanced LIGO and Advanced Virgo
arXiv:
 1811.12940 [astro-ph.HE]
Journal: Astrophysical Journal Letters; 882(2):L24(30); 2019
Data: Population inference results
LIGO science summary: Binary black hole properties inferred from O1 and O2

Using our set of ten binary black holes, we can start to make some statistical statements about the population: the distribution of masses, the distribution of spins, the distribution of mergers over cosmic time. With only ten observations, we still have a lot of uncertainty, and can’t make too many definite statements. However, if you were wondering why we don’t see any more black holes more massive than GW170729, even though we can see these out to significant distances, so are we. We infer that almost all stellar-mass black holes have masses less than 45 M_\odot.

More details: The O2 Populations Paper

The O2 Catalogue Paper

Synopsis: O2 Catalogue Paper
Read this if: You want the most up-to-date gravitational results
Favourite part: It’s out! We can tell everyone about our FOUR new detections

This is a BIG paper. It covers our first two observing runs and our main searches for coalescing stellar mass binaries. There will be separate papers going into more detail on searches for other gravitational wave signals.

The instruments

Gravitational wave detectors are complicated machines. You don’t just take them out of the box and press go. We’ll be slowly improving the sensitivity of our detectors as we commission them over the next few years. O2 marks the best sensitivity achieved to date. The paper gives a brief overview of the detector configurations in O2 for both LIGO detectors, which did differ, and Virgo.

During O2, we realised that one source of noise was beam jitter, disturbances in the shape of the laser beam. This was particularly notable in Hanford, where there was a spot on the one of the optics. Fortunately, we are able to measure the effects of this, and hence subtract out this noise. This has now been done for the whole of O2. It makes a big difference! Derek Davis and TJ Massinger won the first LIGO Laboratory Award for Excellence in Detector Characterization and Calibration™ for implementing this noise subtraction scheme (the award citation almost spilled the beans on our new detections). I’m happy that GW170104 now has an increased signal-to-noise ratio, which means smaller uncertainties on its parameters.

The searches

We use three search algorithms in this paper. We have two matched-filter searches (GstLAL and PyCBC). These compare a bank of templates to the data to look for matches. We also use coherent WaveBurst (cWB), which is a search for generic short signals, but here has been tuned to find the characteristic chirp of a binary. Since cWB is more flexible in the signals it can find, it’s slightly less sensitive than the matched-filter searches, but it gives us confidence that we’re not missing things.

The two matched-filter searches both identify all 11 signals with the exception of GW170818, which is only found by GstLAL. This is because PyCBC only flags signals above a threshold in each detector. We’re confident it’s real though, as it is seen in all three detectors, albeit below PyCBC’s threshold in Hanford and Virgo. (PyCBC only looked at signals found in coincident Livingston and Hanford in O2, I suspect they would have found it if they were looking at all three detectors, as that would have let them lower their threshold).

The search pipelines try to distinguish between signal-like features in the data and noise fluctuations. Having multiple detectors is a big help here, although we still need to be careful in checking for correlated noise sources. The background of noise falls off quickly, so there’s a rapid transition between almost-certainly noise to almost-certainly signal. Most of the signals are off the charts in terms of significance, with GW170818, GW151012 and GW170729 being the least significant. GW170729 is found with best significance by cWB, that gives reports a false alarm rate of 1/(50~\mathrm{yr}).

Inverse false alarm rates

Cumulative histogram of results from GstLAL (top left), PyCBC (top right) and cWB (bottom). The expected background is shown as the dashed line and the shaded regions give Poisson uncertainties. The search results are shown as the solid red line and named gravitational-wave detections are shown as blue dots. More significant results are further to the right of the plot. Fig. 2 and Fig. 3 of the O2 Catalogue Paper.

The false alarm rate indicates how often you would expect to find something at least as signal like if you were to analyse a stretch of data with the same statistical properties as the data considered, assuming that they is only noise in the data. The false alarm rate does not fold in the probability that there are real gravitational waves occurring at some average rate. Therefore, we need to do an extra layer of inference to work out the probability that something flagged by a search pipeline is a real signal versus is noise.

The results of this calculation is given in Table IV. GW170729 has a 94% probability of being real using the cWB results, 98% using the GstLAL results, but only 52% according to PyCBC. Therefore, if you’re feeling bold, you might, say, only wager the entire economy of the UK on it being real.

We also list the most marginal triggers. These all have probabilities way below being 50% of being real: if you were to add them all up you wouldn’t get a total of 1 real event. (In my professional opinion, they are garbage). However, if you want to check for what we might have missed, these may be a place to start. Some of these can be explained away as instrumental noise, say scattered light. Others show no obvious signs of disturbance, so are probably just some noise fluctuation.

The source properties

We give updated parameter estimates for all 11 sources. These use updated estimates of calibration uncertainty (which doesn’t make too much difference), improved estimate of the noise spectrum (which makes some difference to the less well measured parameters like the mass ratio), the cleaned data (which helps for GW170104), and our most currently complete waveform models [bonus note].

This plot shows the masses of the two binary components (you can just make out GW170817 down in the corner). We use the convention that the more massive of the two is m_1 and the lighter is m_2. We are now really filling in the mass plot! Implications for the population of black holes are discussed in the Populations Paper.

All binary masses

Estimated masses for the two binary objects for each of the events in O1 and O2. From lowest chirp mass (left; red) to highest (right; purple): GW170817 (solid), GW170608 (dashed), GW151226 (solid), GW151012 (dashed), GW170104 (solid), GW170814 (dashed), GW170809 (dashed), GW170818 (dashed), GW150914 (solid), GW170823 (dashed), GW170729 (solid). The contours mark the 90% credible regions. The grey area is excluded from our convention on masses. Part of Fig. 4 of the O2 Catalogue Paper. The mass ratio is q = m_2/m_1.

As well as mass, black holes have a spin. For the final black hole formed in the merger, these spins are always around 0.7, with a little more or less depending upon which way the spins of the two initial black holes were pointing. As well as being probably the most most massive, GW170729’s could have the highest final spin! It is a record breaker. It radiated a colossal 4.8^{+1.7}_{-1.7} M_\odot worth of energy in gravitational waves [bonus note].

All final black hole masses and spins

Estimated final masses and spins for each of the binary black hole events in O1 and O2. From lowest chirp mass (left; red–orange) to highest (right; purple): GW170608 (dashed), GW151226 (solid), GW151012 (dashed), GW170104 (solid), GW170814 (dashed), GW170809 (dashed), GW170818 (dashed), GW150914 (solid), GW170823 (dashed), GW170729 (solid). The contours mark the 90% credible regions. Part of Fig. 4 of the O2 Catalogue Paper.

There is considerable uncertainty on the spins as there are hard to measure. The best combination to pin down is the effective inspiral spin parameter \chi_\mathrm{eff}. This is a mass weighted combination of the spins which has the most impact on the signal we observe. It could be zero if the spins are misaligned with each other, point in the orbital plane, or are zero. If it is non-zero, then it means that at least one black hole definitely has some spin. GW151226 and GW170729 have \chi_\mathrm{eff} > 0 with more than 99% probability. The rest are consistent with zero. The spin distribution for GW170104 has tightened up for GW170104 as its signal-to-noise ratio has increased, and there’s less support for negative \chi_\mathrm{eff}, but there’s been no move towards larger positive \chi_\mathrm{eff}.

All effective inspiral spin parameters

Estimated effective inspiral spin parameters for each of the events in O1 and O2. From lowest chirp mass (left; red) to highest (right; purple): GW170817, GW170608, GW151226, GW151012, GW170104, GW170814, GW170809, GW170818, GW150914, GW170823, GW170729. Part of Fig. 5 of the O2 Catalogue Paper.

For our analysis, we use two different waveform models to check for potential sources of systematic error. They agree pretty well. The spins are where they show most difference (which makes sense, as this is where they differ in terms of formulation). For GW151226, the effective precession waveform IMRPhenomPv2 gives 0.20^{+0.18}_{-0.08} and the full precession model gives 0.15^{+0.25}_{-0.11} and extends to negative \chi_\mathrm{eff}. I panicked a little bit when I first saw this, as GW151226 having a non-zero spin was one of our headline results when first announced. Fortunately, when I worked out the numbers, all our conclusions were safe. The probability of \chi_\mathrm{eff} < 0 is less than 1%. In fact, we can now say that at least one spin is greater than 0.28 at 99% probability compared with 0.2 previously, because the full precession model likes spins in the orbital plane a bit more. Who says data analysis can’t be thrilling?

Our measurement of \chi_\mathrm{eff} tells us about the part of the spins aligned with the orbital angular momentum, but not in the orbital plane. In general, the in-plane components of the spin are only weakly constrained. We basically only get back the information we put in. The leading order effects of in-plane spins is summarised by the effective precession spin parameter \chi_\mathrm{p}. The plot below shows the inferred distributions for \chi_\mathrm{p}. The left half for each event shows our results, the right shows our prior after imposed the constraints on spin we get from \chi_\mathrm{eff}. We get the most information for GW151226 and GW170814, but even then it’s not much, and we generally cover the entire allowed range of values.

All effective precession spin parameters

Estimated effective inspiral spin parameters for each of the events in O1 and O2. From lowest chirp mass (left; red) to highest (right; purple): GW170817, GW170608, GW151226, GW151012, GW170104, GW170814, GW170809, GW170818, GW150914, GW170823, GW170729. The left (coloured) part of the plot shows the posterior distribution; the right (white) shows the prior conditioned by the effective inspiral spin parameter constraints. Part of Fig. 5 of the O2 Catalogue Paper.

One final measurement which we can make (albeit with considerable uncertainty) is the distance to the source. The distance influences how loud the signal is (the further away, the quieter it is). This also depends upon the inclination of the source (a binary edge-on is quieter than a binary face-on/off). Therefore, the distance is correlated with the inclination and we end up with some butterfly-like plots. GW170729 is again a record setter. It comes from a luminosity distance of 2.84^{+1.40}_{-1.36}~\mathrm{Gpc} away. That means it has travelled across the Universe for 3.26.2 billion years—it potentially started its journey before the Earth formed!

All distances and inclinations

Estimated luminosity distances and orbital inclinations for each of the events in O1 and O2. From lowest chirp mass (left; red) to highest (right; purple): GW170817 (solid), GW170608 (dashed), GW151226 (solid), GW151012 (dashed), GW170104 (solid), GW170814 (dashed), GW170809 (dashed), GW170818 (dashed), GW150914 (solid), GW170823 (dashed), GW170729 (solid). The contours mark the 90% credible regions.An inclination of zero means that we’re looking face-on along the direction of the total angular momentum, and inclination of \pi/2 means we’re looking edge-on perpendicular to the angular momentum. Part of Fig. 7 of the O2 Catalogue Paper.

Waveform reconstructions

To check our results, we reconstruct the waveforms from the data to see that they match our expectations for binary black hole waveforms (and there’s not anything extra there). To do this, we use unmodelled analyses which assume that there is a coherent signal in the detectors: we use both cWB and BayesWave. The results agree pretty well. The reconstructions beautifully match our templates when the signal is loud, but, as you might expect, can resolve the quieter details. You’ll also notice the reconstructions sometimes pick up a bit of background noise away from the signal. This gives you and idea of potential fluctuations.

Spectrograms and waveforms

Time–frequency maps and reconstructed signal waveforms for the binary black holes. For each event we show the results from the detector where the signal was loudest. The left panel for each shows the time–frequency spectrogram with the upward-sweeping chip. The right show waveforms: blue the modelled waveforms used to infer parameters (LALInf; top panel); the red wavelet reconstructions (BayesWave; top panel); the black is the maximum-likelihood cWB reconstruction (bottom panel), and the green (bottom panel) shows reconstructions for simulated similar signals. I think the agreement is pretty good! All the data have been whitened as this is how we perform the statistical analysis of our data. Fig. 10 of the O2 Catalogue Paper.

I still think GW170814 looks like a slug. Some people think they look like crocodiles.

We’ll be doing more tests of the consistency of our signals with general relativity in a future paper.

Merger rates

Given all our observations now, we can set better limits on the merger rates. Going from the number of detections seen to the number merger out in the Universe depends upon what you assume about the mass distribution of the sources. Therefore, we make a few different assumptions.

For binary black holes, we use (i) a power-law model for the more massive black hole similar to the initial mass function of stars, with a uniform distribution on the mass ratio, and (ii) use uniform-in-logarithmic distribution for both masses. These were designed to bracket the two extremes of potential distributions. With our observations, we’re starting to see that the true distribution is more like the power-law, so I expect we’ll be abandoning these soon. Taking the range of possible values from our calculations, the rate is in the range of 9.7101~\mathrm{Gpc^{-3}\,yr^{-1}} for black holes between 5 M_\odot and 50 M_\odot [bonus note].

For binary neutron stars, which are perhaps more interesting astronomers, we use a uniform distribution of masses between 0.8 M_\odot and 2.3 M_\odot, and a Gaussian distribution to match electromagnetic observations. We find that these bracket the range 974440~\mathrm{Gpc^{-3}\,yr^{-1}}. This larger than are previous range, as we hadn’t considered the Gaussian distribution previously.

NSBH rate upper limits

90% upper limits for neutron star–black hole binaries. Three black hole masses were tried and two spin distributions. Results are shown for the two matched-filter search algorithms. Fig. 14 of the O2 Catalogue Paper.

Finally, what about neutron star–black holes? Since we don’t have any detections, we can only place an upper limit. This is a maximum of 610~\mathrm{Gpc^{-3}\,yr^{-1}}. This is about a factor of 2 better than our O1 results, and is starting to get interesting!

We are sure to discover lots more in O3… [bonus note].

The O2 Populations Paper

Synopsis: O2 Populations Paper
Read this if: You want the best family portrait of binary black holes
Favourite part: A maximum black hole mass?

Each detection is exciting. However, we can squeeze even more science out of our observations by looking at the entire population. Using all 10 of our binary black hole observations, we start to trace out the population of binary black holes. Since we still only have 10, we can’t yet be too definite in our conclusions. Our results give us some things to ponder, while we are waiting for the results of O3. I think now is a good time to start making some predictions.

We look at the distribution of black hole masses, black hole spins, and the redshift (cosmological time) of the mergers. The black hole masses tell us something about how you go from a massive star to a black hole. The spins tell us something about how the binaries form. The redshift tells us something about how these processes change as the Universe evolves. Ideally, we would look at these all together allowing for mixtures of binary black holes formed through different means. Given that we only have a few observations, we stick to a few simple models.

To work out the properties of the population, we perform a hierarchical analysis of our 10 binary black holes. We infer the properties of the individual systems, assuming that they come from a given population, and then see how well that population fits our data compared with a different distribution.

In doing this inference, we account for selection effects. Our detectors are not equally sensitive to all sources. For example, nearby sources produce louder signals and we can’t detect signals that are too far away, so if you didn’t account for this you’d conclude that binary black holes only merged in the nearby Universe. Perhaps less obvious is that we are not equally sensitive to all source masses. More massive binaries produce louder signals, so we can detect these further way than lighter binaries (up to the point where these binaries are so high mass that the signals are too low frequency for us to easily spot). This is why we detect more binary black holes than binary neutron stars, even though there are more binary neutron stars out here in the Universe.

Masses

When looking at masses, we try three models of increasing complexity:

  • Model A is a simple power law for the mass of the more massive black hole m_1. There’s no real reason to expect the masses to follow a power law, but the masses of stars when they form do, and astronomers generally like power laws as they’re friendly, so its a sensible thing to try. We fit for the power-law index. The power law goes from a lower limit of 5 M_\odot to an upper limit which we also fit for. The mass of the lighter black hole m_2 is assumed to be uniformly distributed between 5 M_\odot and the mass of the other black hole.
  • Model B is the same power law, but we also allow the lower mass limit to vary from 5 M_\odot. We don’t have much sensitivity to low masses, so this lower bound is restricted to be above 5 M_\odot. I’d be interested in exploring lower masses in the future. Additionally, we allow the mass ratio q = m_2/m_1 of the black holes to vary, trying q^{\beta_q} instead of Model A’s q^0.
  • Model C has the same power law, but now with some smoothing at the low-mass end, rather than a sharp turn-on. Additionally, it includes a Gaussian component towards higher masses. This was inspired by the possibility of pulsational pair-instability supernova causing a build up of black holes at certain masses: stars which undergo this lose extra mass, so you’d end up with lower mass black holes than if the stars hadn’t undergone the pulsations. The Gaussian could fit other effects too, for example if there was a secondary formation channel, or just reflect that the pure power law is a bad fit.

In allowing the mass distributions to vary, we find overall rates which match pretty well those we obtain with our main power-law rates calculation included in the O2 Catalogue Paper, higher than with the main uniform-in-log distribution.

The fitted mass distributions are shown in the plot below. The error bars are pretty broad, but I think the models agree on some broad features: there are more light black holes than heavy black holes; the minimum black hole mass is below about 9 M_\odot, but we can’t place a lower bound on it; the maximum black hole mass is above about 35 M_\odot and below about 50 M_\odot, and we prefer black holes to have more similar masses than different ones. The upper bound on the black hole minimum mass, and the lower bound on the black hole upper mass are set by the smallest and biggest black holes we’ve detected, respectively.

Population vs black hole mass

Binary black hole merger rate as a function of the primary mass (m_1; top) and mass ratio (q; bottom). The solid lines and bands show the medians and 90% intervals. The dashed line shows the posterior predictive distribution: our expectation for future observations averaging over our uncertainties. Fig. 2 of the O2 Populations Paper.

That there does seem to be a drop off at higher masses is interesting. There could be something which stops stars forming black holes in this range. It has been proposed that there is a mass gap due to pair instability supernovae. These explosions completely disrupt their progenitor stars, leaving nothing behind. (I’m not sure if they are accompanied by a flash of green light). You’d expect this to kick for black holes of about 5060 M_\odot. We infer that 99% of merging black holes have masses below 44.0 M_\odot with Model A, 41.8 M_\odot with Model B, and 41.8 M_\odot with Model C. Therefore, our results are not inconsistent with a mass gap. However, we don’t really have enough evidence to be sure.

We can compare how well each of our three models fits the data by looking at their Bayes factors. These naturally incorporate the complexity of the models: models with more parameters (which can be more easily tweaked to match the data) are penalised so that you don’t need to worry about overfitting. We have a preference for Model C. It’s not strong, but I think good evidence that we can’t use a simple power law.

Spins

To model the spins:

  • For the magnitude, we assume a beta distribution. There’s no reason for this, but these are convenient distributions for things between 0 and 1, which are the limits on black hole spin (0 is nonspinning, 1 is as fast as you can spin). We assume that both spins are drawn from the same distribution.
  • For the spin orientations, we use a mix of an isotropic distribution and a Gaussian centred on being aligned with the orbital angular momentum. You’d expect an isotropic distribution if binaries were assembled dynamically, and perhaps something with spins generally aligned with each other if the binary evolved in isolation.

We don’t get any useful information on the mixture fraction. Looking at the spin magnitudes, we have a preference towards smaller spins, but still have support for large spins. The more misaligned spins are, the larger the spin magnitudes can be: for the isotropic distribution, we have support all the way up to maximal values.

Parametric and binned spin magnitude distributions

Inferred spin magnitude distributions. The left shows results for the parametric distribution, assuming a mixture of almost aligned and isotropic spin, with the median (solid), 50% and 90% intervals shaded, and the posterior predictive distribution as the dashed line. Results are included both for beta distributions which can be singular at 0 and 1, and with these excluded. Model V is a very low spin model shown for comparison. The right shows a binned reconstruction of the distribution for aligned and isotropic distributions, showing the median and 90% intervals. Fig. 8 of the O2 Populations Paper.

Since spins are harder to measure than masses, it is not surprising that we can’t make strong statements yet. If we were to find something with definitely negative \chi_\mathrm{eff}, we would be able to deduce that spins can be seriously misaligned.

Redshift evolution

As a simple model of evolution over cosmological time, we allow the merger rate to evolve as (1+z)^\lambda. That’s right, another power law! Since we’re only sensitive to relatively small redshifts for the masses we detect (z < 1), this gives a good approximation to a range of different evolution schemes.

Rate versus redshift

Evolution of the binary black hole merger rate (blue), showing median, 50% and 90% intervals. For comparison, a non-evolving rate calculated using Model B is shown too. Fig. 6 of the O2 Populations Paper.

We find that we prefer evolutions that increase with redshift. There’s an 88% probability that \lambda > 0, but we’re still consistent with no evolution. We might expect rate to increase as star formation was higher bach towards z =2. If we can measure the time delay between forming stars and black holes merging, we could figure out what happens to these systems in the meantime.

The local merger rate is broadly consistent with what we infer with our non-evolving distributions, but is a little on the lower side.

Bonus notes

Naming

Gravitational waves are named as GW-year-month-day, so our first observation from 14 September 2015 is GW150914. We realise that this convention suffers from a Y2K-style bug, but by the time we hit 2100, we’ll have so many detections we’ll need a new scheme anyway.

Previously, we had a second designation for less significant potential detections. They were LIGO–Virgo Triggers (LVT), the one example being LVT151012. No-one was really happy with this designation, but it stems from us being cautious with our first announcement, and not wishing to appear over bold with claiming we’d seen two gravitational waves when the second wasn’t that certain. Now we’re a bit more confident, and we’ve decided to simplify naming by labelling everything a GW on the understanding that this now includes more uncertain events. Under the old scheme, GW170729 would have been LVT170729. The idea is that the broader community can decide which events they want to consider as real for their own studies. The current condition for being called a GW is that the probability of it being a real astrophysical signal is at least 50%. Our 11 GWs are safely above that limit.

The naming change has hidden the fact that now when we used our improved search pipelines, the significance of GW151012 has increased. It would now be a GW even under the old scheme. Congratulations LVT151012, I always believed in you!

Trust LIGO

Is it of extraterrestrial origin, or is it just a blurry figure? GW151012: the truth is out there!.

Burning bright

We are lacking nicknames for our new events. They came in so fast that we kind of lost track. Ilya Mandel has suggested that GW170729 should be the Tiger, as it happened on the International Tiger Day. Since tigers are the biggest of the big cats, this seems apt.

Carl-Johan Haster argues that LIGO+tiger = Liger. Since ligers are even bigger than tigers, this seems like an excellent case to me! I’d vote for calling the bigger of the two progenitor black holes GW170729-tiger, the smaller GW170729-lion, and the final black hole GW17-729-liger.

Suggestions for other nicknames are welcome, leave your ideas in the comments.

August 2017—Something fishy or just Poisson statistics?

The final few weeks of O2 were exhausting. I was trying to write job applications at the time, and each time I sat down to work on my research proposal, my phone went off with another alert. You may be wondering about was special about August. Some have hypothesised that it is because Aaron Zimmerman, my partner for the analysis of GW170104, was on the Parameter Estimation rota to analyse the last few weeks of O2. The legend goes that Aaron is especially lucky as he was bitten by a radioactive Leprechaun. I can neither confirm nor deny this. However, I make a point of playing any lottery numbers suggested by him.

A slightly more mundane explanation is that August was when the detectors were running nice and stably. They were observing for a large fraction of the time. LIGO Livingston reached its best sensitivity at this time, although it was less happy for Hanford. We often quantify the sensitivity of our detectors using their binary neutron star range, the average distance they could see a binary neutron star system with a signal-to-noise ratio of 8. If this increases by a factor of 2, you can see twice as far, which means you survey 8 times the volume. This cubed factor means even small improvements can have a big impact. The LIGO Livingston range peak a little over 100~\mathrm{Mpc}. We’re targeting at least 120~\mathrm{Mpc} for O3, so August 2017 gives an indication of what you can expect.

Detector sensitivity across O2

Binary neutron star range for the instruments across O2. The break around week 3 was for the holidays (We did work Christmas 2015). The break at week 23 was to tune-up the instruments, and clean the mirrors. At week 31 there was an earthquake in Montana, and the Hanford sensitivity didn’t recover by the end of the run. Part of Fig. 1 of the O2 Catalogue Paper.

Of course, in the case of GW170817, we just got lucky.

Sign errors

GW170809 was the first event we identified with Virgo after it joined observing. The signal in Virgo is very quiet. We actually got better results when we flipped the sign of the Virgo data. We were just starting to get paranoid when GW170814 came along and showed us that everything was set up right at Virgo. When I get some time, I’d like to investigate how often this type of confusion happens for quiet signals.

SEOBNRv3

One of the waveforms, which includes the most complete prescription of the precession of the spins of the black holes, we use in our analysis goes by the technical name of SEOBNRv3. It is extremely computationally expensive. Work has been done to improve that, but this hasn’t been implemented in our reviewed codes yet. We managed to complete an analysis for the GW170104 Discovery Paper, which was a huge effort. I said then to not expect it for all future events. We did it for all the black holes, even for the lowest mass sources which have the longest signals. I was responsible for GW151226 runs (as well as GW170104) and I started these back at the start of the summer. Eve Chase put in a heroic effort to get GW170608 results, we pulled out all the stops for that.

Thanksgiving

I have recently enjoyed my first Thanksgiving in the US. I was lucky enough to be hosted for dinner by Shane Larson and his family (and cats). I ate so much I thought I might collapse to a black hole. Apparently, a Thanksgiving dinner can be 3000–4500 calories. That sounds like a lot, but the merger of GW170729 would have emitted about 5 \times 10^{40} times more energy. In conclusion, I don’t need to go on a diet.

Confession

We cheated a little bit in calculating the rates. Roughly speaking, the merger rate is given by

\displaystyle R = \frac{N}{\langle VT\rangle},

where N is the number of detections and \langle VT\rangle is the amount of volume and time we’ve searched. You expect to detect more events if you increase the sensitivity of the detectors (and hence V), or observer for longer (and hence increase T). In our calculation, we included GW170608 in N, even though it was found outside of standard observing time. Really, we should increase \langle VT\rangle to factor in the extra time outside of standard observing time when we could have made a detection. This is messy to calculate though, as there’s not really a good way to check this. However, it’s only a small fraction of the time (so the extra T should be small), and for much of the sensitivity of the detectors will be poor (so V will be small too). Therefore, we estimated any bias from neglecting this is smaller than our uncertainty from the calibration of the detectors, and not worth worrying about.

New sources

We saw our first binary black hole shortly after turning on the Advanced LIGO detectors. We saw our first binary neutron star shortly after turning on the Advanced Virgo detector. My money is therefore on our first neutron star–black hole binary shortly after we turn on the KAGRA detector. Because science…