GW190814—The mystery of a 2.6 solar mass compact object

GW190814 is an exception discovery from the third observing run (O3) of the LIGO and Virgo gravitational wave detectors. The signal came from the coalescence of a binary made up of a component about 23 times the mass of our Sun (solar masses) and one about 2.6 solar masses. The more massive component would be a black hole, similar to past discoveries. The less massive component, however, we’re not sure about. This is a mass range where observations have been lacking. It could be a neutron star. In this case, GW190814 would be the first time we have seen a neutron star–black hole binary. This could also be the most massive neutron star ever found, certainly the most massive in a compact-object (black hole or neutron star) binary. Alternatively, it could be a black hole, in which case it would be the smallest black hole ever found. We have discovered something special, we’re just not sure exactly what…

Black hole and neutron star masses highlighting GW190814

The population of compact objects (black holes and neutron stars) observed with gravitational waves and with electromagnetic astronomy, including a few which are uncertain. GW190814 is highlighted. It is not clear if its lighter component is a black hole or neutron star. Source: Northwestern

Detection

14 August 2019 marked the second birthday of GW170814—the first gravitational wave we clearly detected using all three of our detectors. As a present, we got an even more exciting detection.

I was at the MESA Summer School at the time [bonus advertisement], learning how to model stars. My student Chase come over excitedly as soon as he saw the alert. We snuck a look at the data in a private corner of the class. GW190814 (then simply known as candidate S190814bv) was a beautifully clear chirp. You shouldn’t assess how plausible a candidate signal is by eye (that’s why we spent years building detection algorithms [bonus note]), but GW190814 was a clear slam dunk that hit it out of the park straight into the bullseye. Check mate!

Normalised spectrograms for GW190814

Time–frequency plots for GW190814 as measured by LIGO Hanford, LIGO Livingston and Virgo. The chirp of a binary coalescence is clearest in Livingston. For long signals, like GW190814, it is usually hard to pick out the chirp by eye. Figure 1 of the GW190814 Discovery Paper.

Unlike GW170814, however, it seemed that we only had two detectors observing. LIGO Hanford was undergoing maintenance (the same procedure as when GW170608 occurred). However, after some quick checks, it was established that the Hanford data was actually good to use—the detectors had been left alone in the 5 minutes around the signal (phew), so the data were clean (wooh)! We had another three-detector detection.

The big difference that having three detectors make is a much better localization of the source. For GW190814 we get a beautifully tight localization. This was exciting, as GW190814 could be a neutron star–black hole. The initial source classification (which is always pretty uncertain as it’s done before we have detailed analysis) went back and forth between being a binary black hole with one component in the the 3–5 solar mass range, and a neutron star–black hole (which means the less massive component is below 3 solar masses, not necessarily a neutron star). Neutron star–black hole mergers may potentially have an electromagnetic counterparts which can be found by telescopes. Not all neutron star–black hole will have counterparts as sometimes, when the black hole is much bigger than the neutron star, it will be swallowed whole. Even if there is a counterpart, it may be faint to see (we expect this to be increasingly common as our detectors detect gravitational waves from more distance sources). GW190814’s source is about 240 Mpc away (six times the distance of GW170817, meaning any light emitted would be about 36 times fainter) [bonus note]. Many teams searched for counterparts, but none have been reported. Despite the excellent localization, we have no multimessenger counterpart this time.

Sky map for GW190814

Sky localizations for GW190814’s source. The blue dashed contour shows the preliminary localization using only LIGO Livingston and Virgo data, and the solid orange shows the preliminary localization adding in Hanford data. The dashed green contour shows and updated localization used by many for their follow-up studies. The solid purple contour shows our final result, which has an area of just 18.5~\mathrm{deg^2}. All contours are for 90% probabilities. Figure 2 of the GW190814 Discovery Paper.

The sky localisation for GW190814 demonstrates nicely how localization works for gravitational-wave sources. We get most of our information from the delay time between the signal reaching the different detectors. With a two-detector network, a single time delay corresponds to a ring on the sky. We kind of see this with the blue dashed localization above, which was the initial result using just LIGO Livingston and Virgo data. There are actual arcs corresponding to two different time delays. This is because the signal is quiet in Virgo, and so we don’t get an absolute lock on the arrival time: if you shift the signal so it’s one cycle different, it still matches pretty well, so we get two possibilities. The arcs aren’t full circles because information on the phase of the signals, and the relative amplitudes (since detectors are not uniformal sensitive in all directions) add extra information. Adding in LIGO Hanford data gives us more information on the timing. The Hanford–Livingston circle of constant time delay slices through the Livingston–Virgo one, leaving us with just the two overlapping islands as possibilities. The sky localizations shifted a little bit as we refined the analysis, but remained pretty consistent.

Whodunnit?

.From the gravitational wave signal we inferred that GW190814 came from a binary with masses m_1 = 23.2^{+1.1}_{-1.0} solar masses (quoting the 90% range for parameters), and the other m_2 = 2.59^{+0.08}_{-0.09} solar masses. This is remarkable for two reasons: first, the lower mass object is right in the range where we might hit the maximum mass of a neutron star, and second, this is the most asymmetric masses from any of our gravitational wave sources.

Binary component masses for GW190814

Estimated masses for the two components in the binary m_i \geq m_2. We show results several different waveform models (which include spin precession and higher order multiple moments). The two-dimensional shows the 90% probability contour. The one-dimensional plot shows individual masses; the dotted lines mark 90% bounds away from equal mass. Estimates for the maximum neutron star mass are shown for comparison with the mass of the lighter component m_2. Figure 3 of the GW190814 Discovery Paper.

Neutron star or black hole?

Neutron stars are massive balls of stuff™. They are made of matter in its most squished form. A neutron star about 1.4 solar masses would have a radius of only about 12 kilometres. For comparison, that’s roughly the same as trying to fit the mass of 3\times 10^{33} M&Ms (plain; for peanut butter it would be different, and of course, more delicious) into the volume of just 1.2 \times 10^{19} M&Ms (ignoring the fact that you can’t perfectly pack them)! Neutron stars are about 3 \times 10^{14} times more dense than M&Ms. As you make neutron stars heavier, their gravity gets stronger until at some point the strange stuff™ they are made of can’t take the pressure. At this point the neutron star will collapse down to a black hole. Since we don’t know the properties of neutron star stuff™ we don’t know the maximum mass of a neutron star.

We have observed neutron stars of a range of masses. The recently discovered pulsar J0740+6620 may be around 2.1 solar masses, and potentially pulsar J1748−2021B may be around 2.7 solar masses (although that measurement is more uncertain as it requires some strong assumptions about the pulsar’s orbit and its companion star). Using observations of GW170817, estimates have been made that the maximum neutron star mass should be below 2.2 or 2.3 solar masses; using late-time observations of short gamma-ray bursts (assuming that they all come from binary neutron star mergers) indicates an upper limit of 2.4 solar masses, and looking at the observed population of neutron stars, it could be anywhere between 2 and 3 solar masses. About 3 solar masses is a safe upper limit,  as it’s not possible to make stuff™ stiff enough to withstand more pressure than that.

At about 2.6 solar masses, it’s not too much of a stretch to believe that the less massive component is a neutron star. In this case, we have learnt something valuable about the properties of neutron star stuff™. Assuming that we have a neutron star, we can infer the properties of neutron star stuff™. We find that a typical neutron star 1.4 solar masses, the radius would be R_{1.4} = 12.9^{+0.8}_{-0.7}~\mathrm{km} and the tidal deformability \Lambda_{1.4} = 616^{+273}_{-158}.

The plot below shows our results fitting the neutron star equation of state, which describes how the density pf neutron star stuff™ changes with pressure. The dashed lines show the 90% range of our prior (what the analysis would return with no input information). The blue curve shows results adding in GW170817 (what we would have if GW190814 was a binary black hole), we prefer neutron stars made of softer stuff™ (which is squisher to hug, and would generally result in more compact neutron stars). Adding in GW190814 (assuming a neutron star–black hole) pushes us back up to stiffer stuff™ as we now need to support a massive maximum mass.

Neutron star pressure and density

Constraints on the neutron star equation of state, showing how density \rho changes with pressure $p$. The blue curve just uses GW170817, implicitly assuming that GW190814 is from a binary black hole, while the orange shows what happens if we include GW190814, assuming it is from a neutron star–black hole binary. The 90% and 50% credible contours are shown as the dark and lighter bands, and the dashed lines indicate the 90% region of the prior. Figure 8 of the GW190814 Discovery Paper.

What if it’s not a neutron star?

In this case we must have a black hole. In theory black holes can be any mass: you just need to squish enough mass into a small enough space. However, from our observations of X-ray binaries, there seem to be no black holes below about 5 solar masses. This is referred to as the lower mass gap, or the core collapse mass gap. The theory was that when the cores of massive stars collapse, there are different types of explosions and implosions depending upon the core’s mass. When you have a black hole, more material from outside the core falls back than when you have a neutron star. All the extra material would always mean that black holes are born above 5 solar masses. If we’ve found a black hole below this, either this theory is wrong and we need a new explanation for the lack of X-ray observations, or we have a black hole formed via a different means.

Potentially, we could if we measured the effects of the tidal distortion of the neutron star in the gravitational wave signal. Unfortunately, tidal effects are weaker for more unequal mass binaries. GW190814 is extremely unequal, so we can’t measure anything and say either way. Equally, seeing an electromagnetic counterpart would be evidence for a neutron star, but with such unequal masses the neutron star would likely be eaten whole, like me eating an M&M. The mass ratio means that we can’t be certain what we have.

The calculation we can do, is use past observations of neutron stars and measurements of the stiffness of neutron star stuff™ to estimate the probability the the mass of the less massive component is below the maximum neutron star mass. Using measurements from GW170817 for the stuff™ stiffness, we estimate that there’s only a 3% probability of the mass being below the maximum neutron star mass, and using the observed population of neutron stars the probability is 29%. It seems that it is improbable, but not impossible, that the component is a neutron star.

I’m yet to be convinced one way or the other on black hole vs neutron star [bonus note], but I do like the idea of extra small black holes. They would be especially cute, although you must never try to hug them.

The unequal masses

Most of the binaries we’ve seen with gravitational waves so far are consistent with having equal masses. The exception is GW190412, which has a mass ratio of q = m_2/m_1 = 0.28^{+0.13}_{-0.07}. The mass ratio changes a few things about the gravitational wave signal. When you have unequal masses, it is possible to observe higher harmonics in the gravitational wave signal: chirps at multiples of the orbital frequency (the dominant two form a perfect fifth). We observed higher harmonics for the first time with GW190412. GW190814 has a more extreme mass ratio q = 0.112^{+0.008}_{-0.009}. We again spot the next harmonic in GW190814, this time it is even more clear. Modelling gravitational waves from systems with mass ratios of q \sim 0.1 is tricky, it is important to include the higher order multipole moments in order to get good estimates of the source parameters.

Having unequal masses makes some of the properties of the lighter component, like its tidal deformability of its spin, harder to measure. Potentially, it can be easier to pick out the spin of the more massive component. In the case of GW190814, we find that the spin is small, \chi_1 < 0.07. This is our best ever measurement of black hole spin!

Orientation and magnitudes of the two spins

Estimated orientation and magnitude of the two component spins. The distribution for the more massive component is on the left, and for the lighter component on the right. The probability is binned into areas which have uniform prior probabilities, so if we had learnt nothing, the plot would be uniform. The maximum spin magnitude of 1 is appropriate for black holes. On account of the mass ratio, we get a good measurement of the spin of the more massive component, but not the lighter one. Figure 6 of the GW190814 Discovery Paper.

Typically, it is easier to measure the amount of spin aligned with the orbital angular momentum. We often characterise this as the effective inspiral spin parameter. In this case, we measure \chi_\mathrm{eff} = -0.002^{+0.060}_{-0.061}. Harder to measure is the spin in the orbital plane. This controls the amount of spin precession (wobbling in the spin orientation as the orbital angular momentum is not aligned with the total angular momentum), and is characterised by the effective precession spin parameter. For GW190814, we find \chi_\mathrm{p} < 0.07, which is our tightest measurement. It might seem odd that we get our best measurement of in-plane spin in the case when there is no precession. However, this is because if there were precession, we would clearly measure it. Since there is no support for precession in the data, we know that it isn't there, and hence that the amount of in-plane spin is small.

Implications

While we haven’t solved the mystery of neutron star vs black hole, what can we deduce?

  1. Einstein is still not wrong yet. Our tests of general relativity didn’t give us any evidence that something was wrong. We even tried a new test looking for deviations in the spin-induced quadrupole moment. GW190814 was initially thought to be a good case to try this, on account of its mass ratio, unfortunately, since there’s little hint of spin, we don’t get particularly informative results. Next time.
  2. The Universe is expanded about as fast as we’d expect. We have a wonderfully tight localization: GW190814 has the best localization of all our gravitational waves except for GW170817. This means we can cross-reference with galaxy catalogues to estimate the Hubble constant, a measure of the expansion rate of the Universe. We get the distance from our gravitational wave measurement, and the redshift from the catalogue, and putting them together give the Hubble constant H_0. From GW190814 alone, we get H_0 = 83^{+55}_{-53}~\mathrm{km\,s^{-1}\,Mpc^{-1}} (quoting numbers with our usual median and symmetric 90% interval convention; if you like mode and narrowest 68% region, it’s H_0 = 75^{+59}_{-13}~\mathrm{km\,s^{-1}\,Mpc^{-1}}). If we combine with results for GW170817, we get H_0 = 77^{+33}_{-23}~\mathrm{km\,s^{-1}\,Mpc^{-1}} (or H_0 = 70^{+17}_{-8}~\mathrm{km\,s^{-1}\,Mpc^{-1}}) [bonus note].
  3. The merger rate density for a population of GW190814-like systems is 7^{+16}_{-6}~\mathrm{Gpc^{-3}\,yr^{-1}}. If you think you know how GW190814 formed, you’ll need to make sure to get a compatible rate estimate.

What can we say about potential formation channels for the source? This is rather tricky as many predictions assume supernova models which lead to a mass group, so there’s nothing with a compatible mass for the lighter component. I expect there will be lots of checking what happens without this assumption.

Given the mass of the black hole, we would expect that it formed from a low metallicity star. That is a star which doesn’t have too many of the elements heavier than hydrogen and helium. Heavier elements lead to stronger stellar winds, meaning that stars are smaller at the end of their lives and it is harder to get a black hole that’s 23 solar masses. The same is true for many of the black holes we’ve seen in gravitational waves.

Massive stars have short lives. The bigger they are, the more quickly they burn up all their nuclear fuel. This has an important implication for the mass of the lighter component: it probably has not grown much since it formed. We could either have the bigger component forming from the initially bigger star (which is the simpler scenario to imagine). In this case, the black hole forms first, and there is no chance for the lighter component to grow after it forms as it’s sitting next to a black hole. It is possible that the lighter component formed first if when its parent star started expanding in middle age (as many of us do) it transferred lots of mass to its companion star. The mass transfer would reverse which of the stars was more massive, and we could then have some accretion back onto the lighter compact object to grow it a bit. However, the massive partner star would only have a short lifetime, and compact objects can only swallow a relatively small rate of material, so you wouldn’t be able the lighter component by much more than 0.1 solar masses, not nearly enough to bridge the gap from what we would consider a typical neutron star. We do need to figure out a way to form compact objects about 2.6 solar masses.

How to form GW190814-like systems through isolated binary evolution.

Two possible ways of forming GW190814-like systems through isolated binary evolution. In Channel A the heavier black hole forms first from the initially more massive star. In Channel B, the initially more massive star transfers so much mass to its companion that we get a mass inversion, and the lighter component forms first. In the plot, a is the orbital separation, e is the orbital inclination, t is the time since the stars started their life on the main sequence. The letters on the right indicate the evolution phase: ZAMS is zero-age main sequence, MS is main sequence (burning hydrogen), CHeB is core helium burning (once the hydrogen has been used up), and BH and NS mean black hole and neutron star. At low metallicities Z (when stars have few elements heavier than hydrogen and helium), the two channels are about as common, as metallicity increases Channel A becomes more common. Figure 6 of Zevin et al. (2020).

The mass ratio is difficult to produce. It’s not what you would expect for dynamically formed binaries in globular clusters (as you’d expect heavier objects to pair up). It could maybe happen in the discs around active galactic nuclei, although there are lots of uncertainties about this, and since this is only a small part of space, I wouldn’t expect a large numbers of events. Isolated binaries (or higher multiples) can form these mass ratios, but they are rare for binaries that go on to merge. Again, it might be difficult to produce enough systems to explain our observation of GW190814. We need to do some more sleuthing to figure out how binaries form.

Epilogue

The LIGO and Virgo gravitational wave detectors embody decades of work by thousand of scientists across the globe. It took many hard years of research to create the technology capable of observing gravitational waves. Many doubted it would ever be possible. Finally, in 2015, we succeeded. The first detection of gravitational waves opened a new field of astronomy—our goal was not to just detect gravitational waves once, but to use them to explore our Universe. Since then we have continued to work improving our detectors and our analyses. More discoveries have come. LIGO and Virgo are revolutionising our understanding of astrophysics, and GW190814 is the latest advancement in our knowledge. It will not be the last. Gravitational wave astronomy thrives thanks to, and as a consequence of, many people working together towards a common goal.

If a few thousand people can work together to imagine, create and operate gravitational wave detectors, think what we could achieve if millions, or billions, or if we all worked together. Let’s get to work.

Title: GW190814: Gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object
Journal: Astrophysical Journal Letters; 896(2):L44(20); 2020
arXiv: 2006.12611 [astro.ph-HE]
Science summary: The curious case of GW190814: The coalescence of a stellar-mass black hole and a mystery compact object
Data release: Gravitational Wave Open Science Center; Parameter estimation results
Rating: 🍩🐦🦚🦆❔

Bonus notes

MESA Summer School

Modules for Experiments in Stellar Astrophysics (MESA) is a code for simulating the evolution of stars. It’s pretty neat, and can do all sorts of cool things. The summer school is a chance to be taught how to use it as well as some theory behind the lives of stars. The school is aimed at students (advanced undergrads and postgrads) and postdocs starting out using or developing the code, but there’ll let faculty attend if there’s space. I was lucky enough to get a spot together with my fantastic students Chase, Monica and Kyle. I was extremely impressed by everything. The ratio of demonstrators to students was high, all the sessions were well thought out, and ice cream was plentiful. I would definitely recommend attending if you are interested in stellar evolution, and if you want to build the user base for your scientific code, this is certainly a wonderful model to follow.

Detection significance

For our final (for now) detection significance we only used data from LIGO Livingston and Virgo. Although the Hanford data are good, we wouldn’t have looked at this time without the prompt from the other detectors. We therefore need to be careful not to bias ourselves. For simplicity we’ve stuck with using just the two detectors. Since Hanford would boost the significance, these results should be conservative. GstLAL and PyCBC identified the event with false alarm rates of better than 1 in 100,000 years and 1 in 42,000 years, respectively.

Distance

The luminosity distance of GW190814’s source is estimated as 241^{+41}_{-45}~\mathrm{Mpc}. The luminosity distance is a measure which incorporates the effects of the signal travelling through an expanding Universe, so it’s not quite the same as the actual distance between us and the source. Given the uncertainties on the luminosity distance, it would have taken the signal somewhere between 600 million and 850 million years to reach us. It therefore set out during the Neoproterozoic era here on Earth, which is pretty cool.

In this travel time, the signal would have covered about 6 sextillion kilometres, or to put it in easier to understand units, about 400,000,000,000,000,000,000,000,000 M&Ms laid end-to-end. Eating that many M&Ms would give you about 2 \times 10^{27} calories. That seems like a lot of energy, but it’s less than 2 \times 10^{-16} of the energy emitted as gravitational waves for GW190814.

Betting

Given current uncertainties on what the maximum mass of a neutron star should be, it is hard to offer odds for whether of not the smaller component of GW190814’s binary is a black hole or neutron star. Since it does seem higher mass than expected for neutron stars from other observations, a black hole origin does seem more favoured, but as GW190425 showed, we might be missing the full picture about the neutron star population. I wouldn’t be too surprised if our understanding shifted over the next few years. Consequently, I’d stretch to offering odds of one peanut butter M&M to one plain chocolate M&M in favour of black holes over neutron stars.

Hubble constant

Using the Dark Energy Survey galaxy catalogue, Palmese et al. (2020) calculate a Hubble constant of H_0 = 66^{+55}_{-18}~\mathrm{km\,s^{-1}\,Mpc^{-1}} (mode and narrowest 68% region) using GW190814. Adding in GW170814 they get H_0 = 68^{+43}_{-21}~\mathrm{km\,s^{-1}\,Mpc^{-1}} as a gravitational-wave-only measurement, and including GW170817 and its electromagnetic counterpart gives H_0 = 69.0^{+14.0}_{-7.5}~\mathrm{km\,s^{-1}\,Mpc^{-1}}.

The O2 Catalogue—It goes up to 11

The full results of our second advanced-detector observing run (O2) have now been released—we’re pleased to announce four new gravitational wave signals: GW170729, GW170809, GW170818 and GW170823 [bonus note]. These latest observations are all of binary black hole systems. Together, they bring our total to 10 observations of binary black holes, and 1 of a binary neutron star. With more frequent detections on the horizon with our third observing run due to start early 2019, the era of gravitational wave astronomy is truly here.

Black hole and neutron star masses

The population of black holes and neutron stars observed with gravitational waves and with electromagnetic astronomy. You can play with an interactive version of this plot online.

The new detections are largely consistent with our previous findings. GW170809, GW170818 and GW170823 are all similar to our first detection GW150914. Their black holes have masses around 20 to 40 times the mass of our Sun. I would lump GW170104 and GW170814 into this class too. Although there were models that predicted black holes of these masses, we weren’t sure they existed until our gravitational wave observations. The family of black holes continues out of this range. GW151012, GW151226 and GW170608 fall on the lower mass side. These overlap with the population of black holes previously observed in X-ray binaries. Lower mass systems can’t be detected as far away, so we find fewer of these. On the higher end we have GW170729 [bonus note]. Its source is made up of black holes with masses 50.2^{+16.2}_{-10.2} M_\odot and 34.0^{+9.1}_{-10.1} M_\odot (where M_\odot is the mass of our Sun). The larger black hole is a contender for the most massive black hole we’ve found in a binary (the other probable contender is GW170823’s source, which has a 39.5^{+11.2}_{-6.7} M_\odot black hole). We have a big happy family of black holes!

Of the new detections, GW170729, GW170809 and GW170818 were both observed by the Virgo detector as well as the two LIGO detectors. Virgo joined O2 for an exciting August [bonus note], and we decided that the data at the time of GW170729 were good enough to use too. Unfortunately, Virgo wasn’t observing at the time of GW170823. GW170729 and GW170809 are very quiet in Virgo, you can’t confidently say there is a signal there [bonus note]. However, GW170818 is a clear detection like GW170814. Well done Virgo!

Using the collection of results, we can start understand the physics of these binary systems. We will be summarising our findings in a series of papers. A huge amount of work went into these.

The papers

The O2 Catalogue Paper

Title: GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs
arXiv:
 1811.12907 [astro-ph.HE]
Data: Catalogue; Parameter estimation results
Journal: Physical Review X; 9(3):031040(49); 2019
LIGO science summary: GWTC-1: A new catalog of gravitational-wave detections

The paper summarises all our observations of binaries to date. It covers our first and second observing runs (O1 and O2). This is the paper to start with if you want any information. It contains estimates of parameters for all our sources, including updates for previous events. It also contains merger rate estimates for binary neutron stars and binary black holes, and an upper limit for neutron star–black hole binaries. We’re still missing a neutron star–black hole detection to complete the set.

More details: The O2 Catalogue Paper

The O2 Populations Paper

Title: Binary black hole population properties inferred from the first and second observing runs of Advanced LIGO and Advanced Virgo
arXiv:
 1811.12940 [astro-ph.HE]
Journal: Astrophysical Journal Letters; 882(2):L24(30); 2019
Data: Population inference results
LIGO science summary: Binary black hole properties inferred from O1 and O2

Using our set of ten binary black holes, we can start to make some statistical statements about the population: the distribution of masses, the distribution of spins, the distribution of mergers over cosmic time. With only ten observations, we still have a lot of uncertainty, and can’t make too many definite statements. However, if you were wondering why we don’t see any more black holes more massive than GW170729, even though we can see these out to significant distances, so are we. We infer that almost all stellar-mass black holes have masses less than 45 M_\odot.

More details: The O2 Populations Paper

The O2 Catalogue Paper

Synopsis: O2 Catalogue Paper
Read this if: You want the most up-to-date gravitational results
Favourite part: It’s out! We can tell everyone about our FOUR new detections

This is a BIG paper. It covers our first two observing runs and our main searches for coalescing stellar mass binaries. There will be separate papers going into more detail on searches for other gravitational wave signals.

The instruments

Gravitational wave detectors are complicated machines. You don’t just take them out of the box and press go. We’ll be slowly improving the sensitivity of our detectors as we commission them over the next few years. O2 marks the best sensitivity achieved to date. The paper gives a brief overview of the detector configurations in O2 for both LIGO detectors, which did differ, and Virgo.

During O2, we realised that one source of noise was beam jitter, disturbances in the shape of the laser beam. This was particularly notable in Hanford, where there was a spot on the one of the optics. Fortunately, we are able to measure the effects of this, and hence subtract out this noise. This has now been done for the whole of O2. It makes a big difference! Derek Davis and TJ Massinger won the first LIGO Laboratory Award for Excellence in Detector Characterization and Calibration™ for implementing this noise subtraction scheme (the award citation almost spilled the beans on our new detections). I’m happy that GW170104 now has an increased signal-to-noise ratio, which means smaller uncertainties on its parameters.

The searches

We use three search algorithms in this paper. We have two matched-filter searches (GstLAL and PyCBC). These compare a bank of templates to the data to look for matches. We also use coherent WaveBurst (cWB), which is a search for generic short signals, but here has been tuned to find the characteristic chirp of a binary. Since cWB is more flexible in the signals it can find, it’s slightly less sensitive than the matched-filter searches, but it gives us confidence that we’re not missing things.

The two matched-filter searches both identify all 11 signals with the exception of GW170818, which is only found by GstLAL. This is because PyCBC only flags signals above a threshold in each detector. We’re confident it’s real though, as it is seen in all three detectors, albeit below PyCBC’s threshold in Hanford and Virgo. (PyCBC only looked at signals found in coincident Livingston and Hanford in O2, I suspect they would have found it if they were looking at all three detectors, as that would have let them lower their threshold).

The search pipelines try to distinguish between signal-like features in the data and noise fluctuations. Having multiple detectors is a big help here, although we still need to be careful in checking for correlated noise sources. The background of noise falls off quickly, so there’s a rapid transition between almost-certainly noise to almost-certainly signal. Most of the signals are off the charts in terms of significance, with GW170818, GW151012 and GW170729 being the least significant. GW170729 is found with best significance by cWB, that gives reports a false alarm rate of 1/(50~\mathrm{yr}).

Inverse false alarm rates

Cumulative histogram of results from GstLAL (top left), PyCBC (top right) and cWB (bottom). The expected background is shown as the dashed line and the shaded regions give Poisson uncertainties. The search results are shown as the solid red line and named gravitational-wave detections are shown as blue dots. More significant results are further to the right of the plot. Fig. 2 and Fig. 3 of the O2 Catalogue Paper.

The false alarm rate indicates how often you would expect to find something at least as signal like if you were to analyse a stretch of data with the same statistical properties as the data considered, assuming that they is only noise in the data. The false alarm rate does not fold in the probability that there are real gravitational waves occurring at some average rate. Therefore, we need to do an extra layer of inference to work out the probability that something flagged by a search pipeline is a real signal versus is noise.

The results of this calculation is given in Table IV. GW170729 has a 94% probability of being real using the cWB results, 98% using the GstLAL results, but only 52% according to PyCBC. Therefore, if you’re feeling bold, you might, say, only wager the entire economy of the UK on it being real.

We also list the most marginal triggers. These all have probabilities way below being 50% of being real: if you were to add them all up you wouldn’t get a total of 1 real event. (In my professional opinion, they are garbage). However, if you want to check for what we might have missed, these may be a place to start. Some of these can be explained away as instrumental noise, say scattered light. Others show no obvious signs of disturbance, so are probably just some noise fluctuation.

The source properties

We give updated parameter estimates for all 11 sources. These use updated estimates of calibration uncertainty (which doesn’t make too much difference), improved estimate of the noise spectrum (which makes some difference to the less well measured parameters like the mass ratio), the cleaned data (which helps for GW170104), and our most currently complete waveform models [bonus note].

This plot shows the masses of the two binary components (you can just make out GW170817 down in the corner). We use the convention that the more massive of the two is m_1 and the lighter is m_2. We are now really filling in the mass plot! Implications for the population of black holes are discussed in the Populations Paper.

All binary masses

Estimated masses for the two binary objects for each of the events in O1 and O2. From lowest chirp mass (left; red) to highest (right; purple): GW170817 (solid), GW170608 (dashed), GW151226 (solid), GW151012 (dashed), GW170104 (solid), GW170814 (dashed), GW170809 (dashed), GW170818 (dashed), GW150914 (solid), GW170823 (dashed), GW170729 (solid). The contours mark the 90% credible regions. The grey area is excluded from our convention on masses. Part of Fig. 4 of the O2 Catalogue Paper. The mass ratio is q = m_2/m_1.

As well as mass, black holes have a spin. For the final black hole formed in the merger, these spins are always around 0.7, with a little more or less depending upon which way the spins of the two initial black holes were pointing. As well as being probably the most most massive, GW170729’s could have the highest final spin! It is a record breaker. It radiated a colossal 4.8^{+1.7}_{-1.7} M_\odot worth of energy in gravitational waves [bonus note].

All final black hole masses and spins

Estimated final masses and spins for each of the binary black hole events in O1 and O2. From lowest chirp mass (left; red–orange) to highest (right; purple): GW170608 (dashed), GW151226 (solid), GW151012 (dashed), GW170104 (solid), GW170814 (dashed), GW170809 (dashed), GW170818 (dashed), GW150914 (solid), GW170823 (dashed), GW170729 (solid). The contours mark the 90% credible regions. Part of Fig. 4 of the O2 Catalogue Paper.

There is considerable uncertainty on the spins as there are hard to measure. The best combination to pin down is the effective inspiral spin parameter \chi_\mathrm{eff}. This is a mass weighted combination of the spins which has the most impact on the signal we observe. It could be zero if the spins are misaligned with each other, point in the orbital plane, or are zero. If it is non-zero, then it means that at least one black hole definitely has some spin. GW151226 and GW170729 have \chi_\mathrm{eff} > 0 with more than 99% probability. The rest are consistent with zero. The spin distribution for GW170104 has tightened up for GW170104 as its signal-to-noise ratio has increased, and there’s less support for negative \chi_\mathrm{eff}, but there’s been no move towards larger positive \chi_\mathrm{eff}.

All effective inspiral spin parameters

Estimated effective inspiral spin parameters for each of the events in O1 and O2. From lowest chirp mass (left; red) to highest (right; purple): GW170817, GW170608, GW151226, GW151012, GW170104, GW170814, GW170809, GW170818, GW150914, GW170823, GW170729. Part of Fig. 5 of the O2 Catalogue Paper.

For our analysis, we use two different waveform models to check for potential sources of systematic error. They agree pretty well. The spins are where they show most difference (which makes sense, as this is where they differ in terms of formulation). For GW151226, the effective precession waveform IMRPhenomPv2 gives 0.20^{+0.18}_{-0.08} and the full precession model gives 0.15^{+0.25}_{-0.11} and extends to negative \chi_\mathrm{eff}. I panicked a little bit when I first saw this, as GW151226 having a non-zero spin was one of our headline results when first announced. Fortunately, when I worked out the numbers, all our conclusions were safe. The probability of \chi_\mathrm{eff} < 0 is less than 1%. In fact, we can now say that at least one spin is greater than 0.28 at 99% probability compared with 0.2 previously, because the full precession model likes spins in the orbital plane a bit more. Who says data analysis can’t be thrilling?

Our measurement of \chi_\mathrm{eff} tells us about the part of the spins aligned with the orbital angular momentum, but not in the orbital plane. In general, the in-plane components of the spin are only weakly constrained. We basically only get back the information we put in. The leading order effects of in-plane spins is summarised by the effective precession spin parameter \chi_\mathrm{p}. The plot below shows the inferred distributions for \chi_\mathrm{p}. The left half for each event shows our results, the right shows our prior after imposed the constraints on spin we get from \chi_\mathrm{eff}. We get the most information for GW151226 and GW170814, but even then it’s not much, and we generally cover the entire allowed range of values.

All effective precession spin parameters

Estimated effective inspiral spin parameters for each of the events in O1 and O2. From lowest chirp mass (left; red) to highest (right; purple): GW170817, GW170608, GW151226, GW151012, GW170104, GW170814, GW170809, GW170818, GW150914, GW170823, GW170729. The left (coloured) part of the plot shows the posterior distribution; the right (white) shows the prior conditioned by the effective inspiral spin parameter constraints. Part of Fig. 5 of the O2 Catalogue Paper.

One final measurement which we can make (albeit with considerable uncertainty) is the distance to the source. The distance influences how loud the signal is (the further away, the quieter it is). This also depends upon the inclination of the source (a binary edge-on is quieter than a binary face-on/off). Therefore, the distance is correlated with the inclination and we end up with some butterfly-like plots. GW170729 is again a record setter. It comes from a luminosity distance of 2.84^{+1.40}_{-1.36}~\mathrm{Gpc} away. That means it has travelled across the Universe for 3.26.2 billion years—it potentially started its journey before the Earth formed!

All distances and inclinations

Estimated luminosity distances and orbital inclinations for each of the events in O1 and O2. From lowest chirp mass (left; red) to highest (right; purple): GW170817 (solid), GW170608 (dashed), GW151226 (solid), GW151012 (dashed), GW170104 (solid), GW170814 (dashed), GW170809 (dashed), GW170818 (dashed), GW150914 (solid), GW170823 (dashed), GW170729 (solid). The contours mark the 90% credible regions.An inclination of zero means that we’re looking face-on along the direction of the total angular momentum, and inclination of \pi/2 means we’re looking edge-on perpendicular to the angular momentum. Part of Fig. 7 of the O2 Catalogue Paper.

Waveform reconstructions

To check our results, we reconstruct the waveforms from the data to see that they match our expectations for binary black hole waveforms (and there’s not anything extra there). To do this, we use unmodelled analyses which assume that there is a coherent signal in the detectors: we use both cWB and BayesWave. The results agree pretty well. The reconstructions beautifully match our templates when the signal is loud, but, as you might expect, can resolve the quieter details. You’ll also notice the reconstructions sometimes pick up a bit of background noise away from the signal. This gives you and idea of potential fluctuations.

Spectrograms and waveforms

Time–frequency maps and reconstructed signal waveforms for the binary black holes. For each event we show the results from the detector where the signal was loudest. The left panel for each shows the time–frequency spectrogram with the upward-sweeping chip. The right show waveforms: blue the modelled waveforms used to infer parameters (LALInf; top panel); the red wavelet reconstructions (BayesWave; top panel); the black is the maximum-likelihood cWB reconstruction (bottom panel), and the green (bottom panel) shows reconstructions for simulated similar signals. I think the agreement is pretty good! All the data have been whitened as this is how we perform the statistical analysis of our data. Fig. 10 of the O2 Catalogue Paper.

I still think GW170814 looks like a slug. Some people think they look like crocodiles.

We’ll be doing more tests of the consistency of our signals with general relativity in a future paper.

Merger rates

Given all our observations now, we can set better limits on the merger rates. Going from the number of detections seen to the number merger out in the Universe depends upon what you assume about the mass distribution of the sources. Therefore, we make a few different assumptions.

For binary black holes, we use (i) a power-law model for the more massive black hole similar to the initial mass function of stars, with a uniform distribution on the mass ratio, and (ii) use uniform-in-logarithmic distribution for both masses. These were designed to bracket the two extremes of potential distributions. With our observations, we’re starting to see that the true distribution is more like the power-law, so I expect we’ll be abandoning these soon. Taking the range of possible values from our calculations, the rate is in the range of 9.7101~\mathrm{Gpc^{-3}\,yr^{-1}} for black holes between 5 M_\odot and 50 M_\odot [bonus note].

For binary neutron stars, which are perhaps more interesting astronomers, we use a uniform distribution of masses between 0.8 M_\odot and 2.3 M_\odot, and a Gaussian distribution to match electromagnetic observations. We find that these bracket the range 974440~\mathrm{Gpc^{-3}\,yr^{-1}}. This larger than are previous range, as we hadn’t considered the Gaussian distribution previously.

NSBH rate upper limits

90% upper limits for neutron star–black hole binaries. Three black hole masses were tried and two spin distributions. Results are shown for the two matched-filter search algorithms. Fig. 14 of the O2 Catalogue Paper.

Finally, what about neutron star–black holes? Since we don’t have any detections, we can only place an upper limit. This is a maximum of 610~\mathrm{Gpc^{-3}\,yr^{-1}}. This is about a factor of 2 better than our O1 results, and is starting to get interesting!

We are sure to discover lots more in O3… [bonus note].

The O2 Populations Paper

Synopsis: O2 Populations Paper
Read this if: You want the best family portrait of binary black holes
Favourite part: A maximum black hole mass?

Each detection is exciting. However, we can squeeze even more science out of our observations by looking at the entire population. Using all 10 of our binary black hole observations, we start to trace out the population of binary black holes. Since we still only have 10, we can’t yet be too definite in our conclusions. Our results give us some things to ponder, while we are waiting for the results of O3. I think now is a good time to start making some predictions.

We look at the distribution of black hole masses, black hole spins, and the redshift (cosmological time) of the mergers. The black hole masses tell us something about how you go from a massive star to a black hole. The spins tell us something about how the binaries form. The redshift tells us something about how these processes change as the Universe evolves. Ideally, we would look at these all together allowing for mixtures of binary black holes formed through different means. Given that we only have a few observations, we stick to a few simple models.

To work out the properties of the population, we perform a hierarchical analysis of our 10 binary black holes. We infer the properties of the individual systems, assuming that they come from a given population, and then see how well that population fits our data compared with a different distribution.

In doing this inference, we account for selection effects. Our detectors are not equally sensitive to all sources. For example, nearby sources produce louder signals and we can’t detect signals that are too far away, so if you didn’t account for this you’d conclude that binary black holes only merged in the nearby Universe. Perhaps less obvious is that we are not equally sensitive to all source masses. More massive binaries produce louder signals, so we can detect these further way than lighter binaries (up to the point where these binaries are so high mass that the signals are too low frequency for us to easily spot). This is why we detect more binary black holes than binary neutron stars, even though there are more binary neutron stars out here in the Universe.

Masses

When looking at masses, we try three models of increasing complexity:

  • Model A is a simple power law for the mass of the more massive black hole m_1. There’s no real reason to expect the masses to follow a power law, but the masses of stars when they form do, and astronomers generally like power laws as they’re friendly, so its a sensible thing to try. We fit for the power-law index. The power law goes from a lower limit of 5 M_\odot to an upper limit which we also fit for. The mass of the lighter black hole m_2 is assumed to be uniformly distributed between 5 M_\odot and the mass of the other black hole.
  • Model B is the same power law, but we also allow the lower mass limit to vary from 5 M_\odot. We don’t have much sensitivity to low masses, so this lower bound is restricted to be above 5 M_\odot. I’d be interested in exploring lower masses in the future. Additionally, we allow the mass ratio q = m_2/m_1 of the black holes to vary, trying q^{\beta_q} instead of Model A’s q^0.
  • Model C has the same power law, but now with some smoothing at the low-mass end, rather than a sharp turn-on. Additionally, it includes a Gaussian component towards higher masses. This was inspired by the possibility of pulsational pair-instability supernova causing a build up of black holes at certain masses: stars which undergo this lose extra mass, so you’d end up with lower mass black holes than if the stars hadn’t undergone the pulsations. The Gaussian could fit other effects too, for example if there was a secondary formation channel, or just reflect that the pure power law is a bad fit.

In allowing the mass distributions to vary, we find overall rates which match pretty well those we obtain with our main power-law rates calculation included in the O2 Catalogue Paper, higher than with the main uniform-in-log distribution.

The fitted mass distributions are shown in the plot below. The error bars are pretty broad, but I think the models agree on some broad features: there are more light black holes than heavy black holes; the minimum black hole mass is below about 9 M_\odot, but we can’t place a lower bound on it; the maximum black hole mass is above about 35 M_\odot and below about 50 M_\odot, and we prefer black holes to have more similar masses than different ones. The upper bound on the black hole minimum mass, and the lower bound on the black hole upper mass are set by the smallest and biggest black holes we’ve detected, respectively.

Population vs black hole mass

Binary black hole merger rate as a function of the primary mass (m_1; top) and mass ratio (q; bottom). The solid lines and bands show the medians and 90% intervals. The dashed line shows the posterior predictive distribution: our expectation for future observations averaging over our uncertainties. Fig. 2 of the O2 Populations Paper.

That there does seem to be a drop off at higher masses is interesting. There could be something which stops stars forming black holes in this range. It has been proposed that there is a mass gap due to pair instability supernovae. These explosions completely disrupt their progenitor stars, leaving nothing behind. (I’m not sure if they are accompanied by a flash of green light). You’d expect this to kick for black holes of about 5060 M_\odot. We infer that 99% of merging black holes have masses below 44.0 M_\odot with Model A, 41.8 M_\odot with Model B, and 41.8 M_\odot with Model C. Therefore, our results are not inconsistent with a mass gap. However, we don’t really have enough evidence to be sure.

We can compare how well each of our three models fits the data by looking at their Bayes factors. These naturally incorporate the complexity of the models: models with more parameters (which can be more easily tweaked to match the data) are penalised so that you don’t need to worry about overfitting. We have a preference for Model C. It’s not strong, but I think good evidence that we can’t use a simple power law.

Spins

To model the spins:

  • For the magnitude, we assume a beta distribution. There’s no reason for this, but these are convenient distributions for things between 0 and 1, which are the limits on black hole spin (0 is nonspinning, 1 is as fast as you can spin). We assume that both spins are drawn from the same distribution.
  • For the spin orientations, we use a mix of an isotropic distribution and a Gaussian centred on being aligned with the orbital angular momentum. You’d expect an isotropic distribution if binaries were assembled dynamically, and perhaps something with spins generally aligned with each other if the binary evolved in isolation.

We don’t get any useful information on the mixture fraction. Looking at the spin magnitudes, we have a preference towards smaller spins, but still have support for large spins. The more misaligned spins are, the larger the spin magnitudes can be: for the isotropic distribution, we have support all the way up to maximal values.

Parametric and binned spin magnitude distributions

Inferred spin magnitude distributions. The left shows results for the parametric distribution, assuming a mixture of almost aligned and isotropic spin, with the median (solid), 50% and 90% intervals shaded, and the posterior predictive distribution as the dashed line. Results are included both for beta distributions which can be singular at 0 and 1, and with these excluded. Model V is a very low spin model shown for comparison. The right shows a binned reconstruction of the distribution for aligned and isotropic distributions, showing the median and 90% intervals. Fig. 8 of the O2 Populations Paper.

Since spins are harder to measure than masses, it is not surprising that we can’t make strong statements yet. If we were to find something with definitely negative \chi_\mathrm{eff}, we would be able to deduce that spins can be seriously misaligned.

Redshift evolution

As a simple model of evolution over cosmological time, we allow the merger rate to evolve as (1+z)^\lambda. That’s right, another power law! Since we’re only sensitive to relatively small redshifts for the masses we detect (z < 1), this gives a good approximation to a range of different evolution schemes.

Rate versus redshift

Evolution of the binary black hole merger rate (blue), showing median, 50% and 90% intervals. For comparison, a non-evolving rate calculated using Model B is shown too. Fig. 6 of the O2 Populations Paper.

We find that we prefer evolutions that increase with redshift. There’s an 88% probability that \lambda > 0, but we’re still consistent with no evolution. We might expect rate to increase as star formation was higher bach towards z =2. If we can measure the time delay between forming stars and black holes merging, we could figure out what happens to these systems in the meantime.

The local merger rate is broadly consistent with what we infer with our non-evolving distributions, but is a little on the lower side.

Bonus notes

Naming

Gravitational waves are named as GW-year-month-day, so our first observation from 14 September 2015 is GW150914. We realise that this convention suffers from a Y2K-style bug, but by the time we hit 2100, we’ll have so many detections we’ll need a new scheme anyway.

Previously, we had a second designation for less significant potential detections. They were LIGO–Virgo Triggers (LVT), the one example being LVT151012. No-one was really happy with this designation, but it stems from us being cautious with our first announcement, and not wishing to appear over bold with claiming we’d seen two gravitational waves when the second wasn’t that certain. Now we’re a bit more confident, and we’ve decided to simplify naming by labelling everything a GW on the understanding that this now includes more uncertain events. Under the old scheme, GW170729 would have been LVT170729. The idea is that the broader community can decide which events they want to consider as real for their own studies. The current condition for being called a GW is that the probability of it being a real astrophysical signal is at least 50%. Our 11 GWs are safely above that limit.

The naming change has hidden the fact that now when we used our improved search pipelines, the significance of GW151012 has increased. It would now be a GW even under the old scheme. Congratulations LVT151012, I always believed in you!

Trust LIGO

Is it of extraterrestrial origin, or is it just a blurry figure? GW151012: the truth is out there!.

Burning bright

We are lacking nicknames for our new events. They came in so fast that we kind of lost track. Ilya Mandel has suggested that GW170729 should be the Tiger, as it happened on the International Tiger Day. Since tigers are the biggest of the big cats, this seems apt.

Carl-Johan Haster argues that LIGO+tiger = Liger. Since ligers are even bigger than tigers, this seems like an excellent case to me! I’d vote for calling the bigger of the two progenitor black holes GW170729-tiger, the smaller GW170729-lion, and the final black hole GW17-729-liger.

Suggestions for other nicknames are welcome, leave your ideas in the comments.

August 2017—Something fishy or just Poisson statistics?

The final few weeks of O2 were exhausting. I was trying to write job applications at the time, and each time I sat down to work on my research proposal, my phone went off with another alert. You may be wondering about was special about August. Some have hypothesised that it is because Aaron Zimmerman, my partner for the analysis of GW170104, was on the Parameter Estimation rota to analyse the last few weeks of O2. The legend goes that Aaron is especially lucky as he was bitten by a radioactive Leprechaun. I can neither confirm nor deny this. However, I make a point of playing any lottery numbers suggested by him.

A slightly more mundane explanation is that August was when the detectors were running nice and stably. They were observing for a large fraction of the time. LIGO Livingston reached its best sensitivity at this time, although it was less happy for Hanford. We often quantify the sensitivity of our detectors using their binary neutron star range, the average distance they could see a binary neutron star system with a signal-to-noise ratio of 8. If this increases by a factor of 2, you can see twice as far, which means you survey 8 times the volume. This cubed factor means even small improvements can have a big impact. The LIGO Livingston range peak a little over 100~\mathrm{Mpc}. We’re targeting at least 120~\mathrm{Mpc} for O3, so August 2017 gives an indication of what you can expect.

Detector sensitivity across O2

Binary neutron star range for the instruments across O2. The break around week 3 was for the holidays (We did work Christmas 2015). The break at week 23 was to tune-up the instruments, and clean the mirrors. At week 31 there was an earthquake in Montana, and the Hanford sensitivity didn’t recover by the end of the run. Part of Fig. 1 of the O2 Catalogue Paper.

Of course, in the case of GW170817, we just got lucky.

Sign errors

GW170809 was the first event we identified with Virgo after it joined observing. The signal in Virgo is very quiet. We actually got better results when we flipped the sign of the Virgo data. We were just starting to get paranoid when GW170814 came along and showed us that everything was set up right at Virgo. When I get some time, I’d like to investigate how often this type of confusion happens for quiet signals.

SEOBNRv3

One of the waveforms, which includes the most complete prescription of the precession of the spins of the black holes, we use in our analysis goes by the technical name of SEOBNRv3. It is extremely computationally expensive. Work has been done to improve that, but this hasn’t been implemented in our reviewed codes yet. We managed to complete an analysis for the GW170104 Discovery Paper, which was a huge effort. I said then to not expect it for all future events. We did it for all the black holes, even for the lowest mass sources which have the longest signals. I was responsible for GW151226 runs (as well as GW170104) and I started these back at the start of the summer. Eve Chase put in a heroic effort to get GW170608 results, we pulled out all the stops for that.

Thanksgiving

I have recently enjoyed my first Thanksgiving in the US. I was lucky enough to be hosted for dinner by Shane Larson and his family (and cats). I ate so much I thought I might collapse to a black hole. Apparently, a Thanksgiving dinner can be 3000–4500 calories. That sounds like a lot, but the merger of GW170729 would have emitted about 5 \times 10^{40} times more energy. In conclusion, I don’t need to go on a diet.

Confession

We cheated a little bit in calculating the rates. Roughly speaking, the merger rate is given by

\displaystyle R = \frac{N}{\langle VT\rangle},

where N is the number of detections and \langle VT\rangle is the amount of volume and time we’ve searched. You expect to detect more events if you increase the sensitivity of the detectors (and hence V), or observer for longer (and hence increase T). In our calculation, we included GW170608 in N, even though it was found outside of standard observing time. Really, we should increase \langle VT\rangle to factor in the extra time outside of standard observing time when we could have made a detection. This is messy to calculate though, as there’s not really a good way to check this. However, it’s only a small fraction of the time (so the extra T should be small), and for much of the sensitivity of the detectors will be poor (so V will be small too). Therefore, we estimated any bias from neglecting this is smaller than our uncertainty from the calibration of the detectors, and not worth worrying about.

New sources

We saw our first binary black hole shortly after turning on the Advanced LIGO detectors. We saw our first binary neutron star shortly after turning on the Advanced Virgo detector. My money is therefore on our first neutron star–black hole binary shortly after we turn on the KAGRA detector. Because science…