Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013

Gravitational waves give us a new way of observing the Universe. This raises the possibility of multimessenger astronomy, where we study the same system using different methods: gravitational waves, light or neutrinos. Each messenger carries different information, so by using them together we can build up a more complete picture of what’s going on. This paper looks for gravitational waves that coincide with radio bursts. None are found, but we now have a template for how to search in the future.

On a dark night, there are two things which almost everyone will have done: wondered at the beauty of the starry sky and wondered exactly what was it that just went bump… Astronomers do both. Transient astronomy is about figuring out what are the things which go bang in the night—not the things which make suspicious noises, but objects which appear (and usually disappear) suddenly in the sky.

Most processes in astrophysics take a looooong time (our Sun is four-and-a-half billion years old and is just approaching middle age). Therefore, when something happens suddenly, flaring perhaps over just a few seconds, you know that something drastic must be happening! We think that most transients must be tied up with a violent event such as an explosion. However, because transients are so short, it can difficult to figure out exactly where they come from (both because they might have faded by the time you look, and because there’s little information to learn from a blip in the first place).

Radio transients are bursts of radio emission of uncertain origin. We’ve managed to figure out that some come from microwave ovens, but the rest do seem to come from space. This paper looks at two types: rotating radio transients (RRATs) and fast radio bursts (FRBs). RRATs look like the signals from pulsars, except that they don’t have the characteristic period pattern of pulsars. It may be that RRATs come from dying pulsars, flickering before they finally switch off, or it may be that they come from neutron stars which are not normally pulsars, but have been excited by a fracturing of their crust (a starquake). FRBs last a few milliseconds, they could be generated when two neutron stars merge and collapse to form a black hole, or perhaps from a highly-magnetised neutron star. Normally, when astronomers start talking about magnetic fields, it means that we really don’t know what’s going on [bonus note]. That is the case here. We don’t know what causes radio transients, but we are excited to try figuring it out.

This paper searches old LIGO, Virgo and GEO data for any gravitational-wave signals that coincide with observed radio transients. We use a catalogue of RRATs and FRBs from the Green Bank Telescope and the Parkes Observatory, and search around these times. We use a burst search, which doesn’t restrict itself to any particular form of gravitational-wave; however, the search was tuned for damped sinusoids and sine–Gaussians (generic wibbles), cosmic strings (which may give an indication of how uncertain we are of where radio transients could come from), and coalescences of binary neutron stars or neutron star–black hole binaries. Hopefully the search covers all plausible options. Discovering a gravitational wave coincident with a radio transient would give us much welcomed information about the source, and perhaps pin down their origin.

Results from search for gravitational waves conicident with radio transients

Search results for gravitational waves coincident with radio transients. The probabilities for each time containing just noise (blue) match the expected background distribution (dashed). This is consistent with a non-detection.

The search discovered nothing. Results match what we would expect from just noise in the detectors. This is not too surprising since we are using data from the first-generation detectors. We’ll be repeating the analysis with the upgraded detectors, which can find signals from larger distances. If we are lucky, multimessenger astronomy will allow us to figure out exactly what needs to go bump to create a radio transient.

arXiv: 1605.01707 [astro-ph.HE]
Journal: Physical Review D; 93(12):122008(14); 2016
Science summary: Searching for gravitational wave bursts in coincidence with short duration radio bursts
Favourite thing that goes bump in the night: Heffalumps and Woozles [probably not the cause of radio transients]

Bonus note

Magnetism and astrophysics

Magnetic fields complicate calculations. They make things more difficult to model and are therefore often left out. However, we know that magnetic fields are everywhere and that they do play important roles in many situations. Therefore, they are often invoked as an explanation of why models can’t explain what’s going on. I learnt early in my PhD that you could ask “What about magnetic fields?” at the end of almost any astrophysics seminar (it might not work for some observational talks, but then you could usually ask “What about dust?” instead). Handy if ever you fall asleep…

All-sky search for long-duration gravitational wave transients with LIGO

It’s now about 7 weeks since the announcement, and the madness is starting to subside. Although, that doesn’t mean things aren’t busy—we’re now enjoying completely new forms of craziness. In mid March we had our LIGO–Virgo Collaboration Meeting. This was part celebration, part talking about finishing our O1 analysis and part thinking ahead to O2, which is shockingly close. It was fun, there was cake.

Gravitational wave detection cake

Celebratory cake from the March LIGO–Virgo Meeting. It was delicious and had a fruity (strawberry?) filling. The image is February 11th’s Astronomy Picture of the Day. There was a second cake without a picture, that was equally delicious, but the queue was shorter.

All the business means that I’ve fallen behind with my posts, and I’ve rather neglected the final paper published the week starting 8 February. This is perhaps rather apt as this paper has the misfortune to be the first non-detection published in the post-detection world. It is also about a neglected class of signals.

Long-duration transients

We look for several types of signals with LIGO (and hopefully soon Virgo and KAGRA):

  • Compact binary coalescences (like two merging black holes), for which we have templates for the signal. High mass systems might only last a fraction of a second within the detector’s frequency range, but low mass systems could last for a minute (which is a huge pain for us to analyse).
  • Continuous waves from rotating neutron stars which are almost constant throughout our observations.
  • Bursts, which are transient signals where we don’t have a good model. The classic burst source is from a supernova explosion.

We have some effective search pipelines for finding short bursts—signals of about a second or less. Coherent Waveburst, which was the first code to spot GW150914 is perhaps the best known example. This paper looks at finding longer burst signals, a few seconds to a few hundred seconds in length.

There aren’t too many well studied models for these long bursts. Most of the potential sources are related to the collapse of massive stars. There can be a large amount of matter moving around quickly in these situations, which is what you want for gravitational waves.

Massive stars may end their life in a core collapse supernova. Having used up its nuclear fuel, the star no longer has the energy to keep itself fluffy, and its core collapses under its own gravity. The collapse leads to an explosion as material condenses to form a neutron star, blasting off the outer layers of the star. Gravitational waves could be generated by the sloshing of the outer layers as some is shot outwards and some falls back, hitting the surface of the new neutron star. The new neutron star itself will start life puffed up and perhaps rapidly spinning, and can generate gravitational waves at it settles down to a stable state—a similar thing could happen if an older neutron star is disturbed by a glitch (where we think the crust readjusts itself in something like an earthquake, but more cataclysmic), or if a neutron star accretes a large blob of material.

For the most massive stars, the core continues to collapse through being a neutron star to become a black hole. The collapse would just produce a short burst, so it’s not what we’re looking for here. However, once we have a black hole, we might build a disc out of material swirling into the black hole (perhaps remnants of the outer parts of the star, or maybe from a companion star). The disc may be clumpy, perhaps because of eddies or magnetic fields (the usual suspects when astrophysicists don’t know exactly what’s going on), and they rapidly inspiralling blobs could emit a gravitational wave signal.

The potential sources don’t involve as much mass as a compact binary coalescence, so these signals wouldn’t be as loud. Therefore we couldn’t see them quite as far way, but they could give us some insight into these messy processes.

The search

The paper looks at results using old LIGO data from the fifth and sixth science runs (S5 and S6). Virgo was running at this time, but the data wasn’t included as it vastly increases the computational cost while only increasing the search sensitivity by a few percent (although it would have helped with locating a source if there were one). The data is analysed with the Stochastic Transient Analysis Multi-detector Pipeline (STAMP); we’ll be doing a similar thing with O1 data too.

STAMP searches for signals by building a spectrogram: a plot of how much power there is at a particular gravitational wave frequency at a particular time. If there is just noise, you wouldn’t expect the power at one frequency and time to be correlated with that at another frequency and time. Therefore, the search looks for clusters, grouping together times or frequencies closer to one another where there is more power then you might expect.

The analysis is cunning, as it coherently analysis data from both detectors together when constructing the spectrogram, folding in the extra distance a gravitational wave must travel between the detectors for a given sky position.

The significance of events is calculated is a similar way to how we search for binary black holes. The pipeline ranks candidates using a detection statistic, a signal-to-noise ratio for the cluster of interesting time–frequency pixels \mathrm{SNR}_\Gamma (something like the amount of power measured divided by the amount you’d expect randomly). We work out how frequently you’d expect a particular value of \mathrm{SNR}_\Gamma by analysing time-shifted data: where we’ve shifted the data from one of the detectors in time relative to data from the other so that we know there can’t be the same signal found in both.

The distribution of \mathrm{SNR}_\Gamma is shown below from the search (dots) and from the noise background (lines). You can see that things are entirely consistent with our expectations for just noise. The most significant event has a false alarm probability of 54%, so you’re better off betting it’s just noise. There are no detections here.

False alarm rate distribution

False alarm rate (FAR) distribution of triggers from S5 (black circles) and S6 (red triangles) as a function of the
signal-to-noise ratio. The background S5 and S6 noise distributions are shown by the solid black and dashed red lines respectively. An idealised Gaussian noise background is shown in cyan. There are no triggers significantly above the expected background level. Fig. 5 from Abbott et al. (2016).

Since the detectors are now much more sensitive, perhaps there’s something lurking in our new data. I still think this in unlikely since we can’t see sources from a significant distance, but I guess we’ll have to wait for the results of the analysis.

arXiv: 1511.04398 [gr-qc]
Journal: Physical Review D; 93(4):042005(19); 2016
Science summary: Stuck in the middle: an all-sky search for gravitational waves of intermediate duration
Favourite (neglected) middle child:
 Lisa Simpson

View from Guano Point

Sunset over the Grand Canyon. One of the perks of academia is the travel. A group of us from Birmingham went on a small adventure after the LIGO–Virgo Meeting. This is another reason why I’ve not been updating my blog.

Directed search for gravitational waves from Scorpius X-1 with initial LIGO

new paper from the LIGO Scientific Collaboration has snuck out. It was actually published back in March but I didn’t notice it, nearly risking my New Year’s resolution. This is another paper on continuous waves from rotating neutron stars, so it’s a little outside my area of expertise. However, there is an official science summary written by people who do know what they’re talking about.

The paper looks at detecting gravitational waves from a spinning neutron star. We didn’t find any. However, we have slightly improved our limit for how loud they need to be before we would have detected them, which is nice.

Neutron stars can rotate rapidly. They can be spun up if they accrete material from a disc orbiting them. If they neutron star has an asymmetry, if it has a little bump, as it rotates it emits gravitational waves. The gravitational waves carry away angular momentum, which should spin down the neutron star. This becomes more effective as the angular velocity increases. At some point you expect that the spin-up effect from accretion balances the spin-down effect of gravitational waves and you are left with a neutron star spinning at pretty constant velocity. We have some evidence that this might happen, as low-mass X-ray binaries seem to have their spins clustered in a small range of frequencies. Assuming we do have this balance, we are looking for a continuous gravitational wave with constant frequency, a rather dull humming.

Scorpius X-1 is the brightest X-ray source in the sky. It contains a neutron star, so it’s a good place to check for gravitational waves from neutron stars. In this case, we’re using data from initial LIGO’s fifth science run (4 November 2005–1 October 2007). This has been done before, but this paper implements some new techniques. I expect that the idea is to test things out ahead of getting data with Advanced LIGO.

X-ray image of Scorpius X-1

Swift X-ray Telescope image of Scorpius X-1 and the X-ray nova J1745-26 (a stellar-mass black hole), along with the scale of moon, as they would appear in the field of view from Earth. Credit: NASA/Goddard Space Flight Center/S. Immler and H. Krimm.

A limit of 10 days’ worth of data is used, as this should be safely within the time taken for the rotational frequency to fluctuate by a noticeable amount due to variation in the amount of accretion. In human terms, that would be the time between lunch and dinner, where your energy levels change because of how much you’ve eaten. They picked data from 21–31 August 2007, as their favourite (it has the best noise performance over the frequency range of interest), and used two other segments to double-check their findings. We’d be able to use more data if we knew how the spin wandered with time.

We already know a lot about Scorpius X-1 from electromagnetic observations (like where it is and its orbital parameters). We don’t know its spin frequency, but we might have an idea about the orientation of its spin if this coincides with radio jets. The paper considers two cases: one where we don’t know anything about the spin orientation, and one where we use information from the jets. The results are similar in both cases.

As the neutron star orbits in its binary system, it moves back and forth which Doppler shifts the gravitational waves. This adds a little interest to the hum, spreading it out over a range of frequencies. The search looks for gravitational waves over this type of frequency range, which they refer to as sidebands.

There are a few events where it looks like there is something, but after carefully checking, these look like they are entirely consistent with noise. I guess this isn’t too surprising. Since they didn’t detect anything, they can only impose an upper limit. This is stronger than the previous upper limit, but only by a factor of about 1.4. This might not sound too great, but the previous analysis used a year of data, whereas this only used 10 days. This method therefore saves a lot on computational time.

The result of the paper is quite nice, but not too exciting. If it were a biscuit, it’d probably be a rich tea. It’s nice to have, but it’s not a custard cream.

arXiv: 1412.5942 [astro-ph.HE]
Journal: Physical Review D; 91(6):062008(20); 2015
Science summary: Combing Initial LIGO Data for the Potentially Strong Continuous Wave Emitter Scorpius X-1
Biscuit rating:
Rich tea