Observing run 1—The papers

The second observing run (O2) of the advanced gravitational wave detectors is now over, which has reminded me how dreadfully behind I am in writing about papers. In this post I’ll summarise results from our first observing run (O1), which ran from September 2015 to January 2016.

I’ll add to this post as I get time, and as papers are published. I’ve started off with just papers searching for compact binary coalescences (as these are closest to my own research). There are separate posts on our detections GW150914 (and its follow-up papers: set I, set II) and GW151226 (this post includes our end-of-run summary of the search for binary black holes, including details of LVT151012).

Transient searches

The O1 Binary Neutron Star/Neutron Star–Black Hole Paper

Title: Upper limits on the rates of binary neutron star and neutron-star–black-hole mergers from Advanced LIGO’s first observing run
arXiv: 1607.07456 [astro-ph.HE]
Journal: Astrophysical Journal Letters; 832(2):L21(15); 2016

Our main search for compact binary coalescences targets binary black holes (binaries of two black holes), binary neutron stars (two neutron stars) and neutron-star–black-hole binaries (one of each). Having announced the results of our search for binary black holes, this paper gives the detail of the rest. Since we didn’t make any detections, we set some new, stricter upper limits on their merger rates. For binary neutron stars, this is 12,600~\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1} .

More details: O1 Binary Neutron Star/Neutron Star–Black Hole Paper Paper summary

The O1 Gamma-Ray Burst Paper

Title: Search for gravitational waves associated with gamma-ray bursts during the first Advanced LIGO observing run and implications for the origin of GRB 150906B
arXiv: 1611.07947 [astro-ph.HE]
Journal: Astrophysical Journal; 841(2):89(18); 2016
LIGO science summary: What’s behind the mysterious gamma-ray bursts? LIGO’s search for clues to their origins

Some binary neutron star or neutron-star–black-hole mergers may be accompanied by a gamma-ray burst. This paper describes our search for signals coinciding with observations of gamma-ray bursts (including GRB 150906B, which was potentially especially close by). Knowing when to look makes it easy to distinguish a signal from noise. We don’t find anything, so we we can exclude any close binary mergers as sources of these gamma-ray bursts.

More details: O1 Gamma-Ray Burst Paper summary

The O1 Intermediate Mass Black Hole Binary Paper

Title: Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO
arXiv: 1704.04628 [gr-qc]
Journal: Physical Review D; 96(2):022001(14); 2017
LIGO science summary: Search for mergers of intermediate-mass black holes

Our main search for binary black holes in O1 targeted systems with masses less than about 100 solar masses. There could be more massive black holes out there. Our detectors are sensitive to signals from binaries up to a few hundred solar masses, but these are difficult to detect because they are so short. This paper describes our specially designed such systems. This combines techniques which use waveform templates and those which look for unmodelled transients (bursts). Since we don’t find anything, we set some new upper limits on merger rates.

More details: O1 Intermediate Mass Black Hole Binary Paper summary

The O1 Binary Neutron Star/Neutron Star–Black Hole Paper

Synopsis: O1 Binary Neutron Star/Neutron Star–Black Hole Paper
Read this if: You want a change from black holes
Favourite part: We’re getting closer to detection (and it’ll still be interesting if we don’t find anything)

The Compact Binary Coalescence (CBC) group target gravitational waves from three different flavours of binary in our main search: binary neutron stars, neutron star–black hole binaries and binary black holes. Before O1, I would have put my money on us detecting a binary neutron star first, around-about O3. Reality had other ideas, and we discovered binary black holes. Those results were reported in the O1 Binary Black Hole Paper; this paper goes into our results for the others (which we didn’t detect).

To search for signals from compact binaries, we use a bank of gravitational wave signals  to match against the data. This bank goes up to total masses of 100 solar masses. We split the bank up, so that objects below 2 solar masses are considered neutron stars. This doesn’t make too much difference to the waveforms we use to search (neutrons stars, being made of stuff, can be tidally deformed by their companion, which adds some extra features to the waveform, but we don’t include these in the search). However, we do limit the spins for neutron stars to less the 0.05, as this encloses the range of spins estimated for neutron star binaries from binary pulsars. This choice shouldn’t impact our ability to detect neutron stars with moderate spins too much.

We didn’t find any interesting events: the results were consistent with there just being background noise. If you read really carefully, you might have deduced this already from the O1 Binary Black Hole Paper, as the results from the different types of binaries are completely decoupled. Since we didn’t find anything, we can set some upper limits on the merger rates for binary neutron stars and neutron star–black hole binaries.

The expected number of events found in the search is given by

\Lambda = R \langle VT \rangle

where R is the merger rate, and $latex \langle VT \rangle$ is the surveyed time–volume (you expect more detections if your detectors are more sensitive, so that they can find signals from further away, or if you leave them on for longer). We can estimate $latex \langle VT \rangle$ by performing a set of injections and seeing how many are found/missed at a given threshold. Here, we use a false alarm rate of one per century. Given our estimate for $latex \langle VT \rangle$ and our observation of zero detections we can, calculate a probability distribution for R using Bayes’ theorem. This requires a choice for a prior distribution of \Lambda. We use a uniform prior, for consistency with what we’ve done in the past.

With a uniform prior, the c confidence level limit on the rate is

\displaystyle R_c = \frac{-\ln(1-c)}{\langle VT \rangle},

so the 90% confidence upper limit is R_{90\%} = 2.30/\langle VT \rangle. This is quite commonly used, for example we make use of it in the O1 Intermediate Mass Black Hole Binary Search. For comparison, if we had used a Jeffrey’s prior of 1/\sqrt{\Lambda}, the equivalent results is

\displaystyle R_c = \frac{\left[\mathrm{erf}^{-1}(c)\right]^2}{\langle VT \rangle},

and hence R_{90\%} = 1.35/\langle VT \rangle, so results would be the same to within a factor of 2, but the results with the uniform prior are more conservative.

The plot below shows upper limits for different neutron star masses, assuming that neutron spins are (uniformly distributed) between 0 and 0.05 and isotropically orientated. From our observations of binary pulsars, we have seen that most of these neutron stars have masses of ~1.35 solar masses, so we can also put a limit of the binary neutron star merger rate assuming that their masses are normally distributed with mean of 1.35 solar masses and standard deviation of 0.13 solar masses. This gives an upper limit of R_{90\%} = 12,100~\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1} for isotropic spins up to 0.05, and R_{90\%} = 12,600~\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1} if you allow the spins up to 0.4.

Upper merger rate limits for binary neutron stars

90% confidence upper limits on the binary neutron star merger rate. These rates assume randomly orientated spins up to 0.05. Results are calculated using PyCBC, one of our search algorithms; GstLAL gives similar results. Figure 4 of the O1 Binary Neutron Star/Neutron Star–Black Hole Paper

For neutron star–black hole binaries there’s a greater variation in possible merger rates because the black holes can have a greater of masses and spins. The upper limits range from about R_{90\%} = 1,200~\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1} to 3,600~\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1} for a 1.4 solar mass neutron star and a black hole between 30 and 5 solar masses and a range of different spins (Table II of the paper).

It’s not surprising that we didn’t see anything in O1, but what about in future runs. The plots below compare projections for our future sensitivity with various predictions for the merger rates of binary neutron stars and neutron star–black hole binaries. A few things have changed since we made these projections, for example O2 ended up being 9 months instead of 6 months, but I think we’re still somewhere in the O2 band. We’ll have to see for O3. From these, it’s clear that a detection on O1 was overly optimistic. In O2 and O3 it becomes more plausible. This means even if we don’t see anything, we’ll be still be doing some interesting astrophysics as we can start ruling out some models.

Comparison of merger rates

Comparison of upper limits for binary neutron star (BNS; top) and neutron star–black hole binaries (NSBH; bottom) merger rates with theoretical and observational limits. The blue bars show O1 limits, the green and orange bars show projections for future observing runs. Figure 6 and 7 from the O1 Binary Neutron Star/Neutron Star–Black Hole Paper

Binary neutron star or neutron star–black hole mergers may be the sources of gamma-ray bursts. These are some of the most energetic explosions in the Universe, but we’re not sure where they come from (I actually find that kind of worrying). We look at this connection a bit more in the O1 Gamma-Ray Burst Paper. The theory is that during the merger, neutron star matter gets ripped apart, squeezed and heated, and as part of this we get jets blasted outwards from the swirling material. There are always jets in these type of things. We see the gamma-ray burst if we are looking down the jet: the wider the jet, the larger the fraction of gamma-ray bursts we see. By comparing our estimated merger rates, with the estimated rate of gamma-ray bursts, we can place some lower limits on the opening angle of the jet. If all gamma-ray bursts come from binary neutron stars, the opening angle needs to be bigger than 2.3_{-1.7}^{+1.7}~\mathrm{deg} and if they all come from neutron star–black hole mergers the angle needs to be bigger than 4.3_{-1.9}^{+3.1}~\mathrm{deg}.

The O1 Gamma-Ray Burst Paper

Synopsis: O1 Gamma-Ray Burst Paper
Read this if: You like explosions. But from a safe distance
Favourite part: We exclude GRB 150906B from being associated with galaxy NGC 3313

Gamma-ray bursts are extremely violent explosions. They come in two (overlapping) classes: short and long. Short gamma-ray bursts are typically shorter than ~2 seconds and have a harder spectrum (more high energy emission). We think that these may come from the coalescence of neutron star binaries. Long gamma-ray bursts are (shockingly) typically longer than ~2 seconds, and have a softer spectrum (less high energy emission). We think that these could originate from the collapse of massive stars (like a supernova explosion). The introduction of the paper contains a neat review of the physics of both these types of sources. Both types of progenitors would emit gravitational waves that could be detected if the source was close enough.

The binary mergers could be picked up by our templated search (as reported in the O1 Binary Neutron Star/Neutron Star–Black Hole Paper): we have a good models for what these signals look like, which allows us to efficiently search for them. We don’t have good models for the collapse of stars, but our unmodelled searches could pick these up. These look for the same signal in multiple detectors, but since they don’t know what they are looking for, it is harder to distinguish a signal from noise than for the templated search. Cross-referencing our usual searches with the times of gamma-ray bursts could help us boost the significance of a trigger: it might not be noteworthy as just a weak gravitational-wave (or gamma-ray) candidate, but considering them together makes it much more unlikely that a coincidence would happen by chance. The on-line RAVEN pipeline monitors for alerts to minimise the chance that miss a coincidence. As well as relying on our standard searches, we also do targeted searches following up on gamma-ray bursts, using the information from these external triggers.

We used two search algorithms:

  • X-Pipeline is an unmodelled search (similar to cWB) which looks for a coherent signal, consistent with the sky position of the gamma-ray burst. This was run for all the gamma-ray bursts (long and short) for which we have good data from both LIGO detectors and a good sky location.
  • PyGRB is a modelled search which looks for binary signals using templates. Our main binary search algorithms check for coincident signals: a signal matching the same template in both detectors with compatible times. This search looks for coherent signals, factoring the source direction. This gives extra sensitivity (~20%–25% in terms of distance). Since we know what the signal looks like, we can also use this algorithm to look for signals when only one detector is taking data. We used this algorithm on all short (or ambiguously classified) gamma-ray bursts for which we data from at least one detector.

In total we analysed times corresponding to 42 gamma-ray bursts: 41 which occurred during O1 plus GRB 150906B. This happening in the engineering run before the start of O1, and luckily Handord was in a stable observing state at the time. GRB 150906B was localised to come from part of the sky close to the galaxy NGC 3313, which is only 54 megaparsec away. This is within the regime where we could have detected a binary merger. This caused much excitement at the time—people thought that this could be the most interesting result of O1—but this dampened down a week later with the detection of GW150914.

GRB 150906B sky location

Interplanetary Network (IPN) localization for GRB 150906B and nearby galaxies. Figure 1 from the O1 Gamma-Ray Burst Paper.

We didn’t find any gravitational-wave counterparts. These means that we could place some lower limits on how far away their sources could be. We performed injections of signals—using waveforms from binaries, collapsing stars (approximated with circular sine–Gaussian waveforms), and unstable discs (using an accretion disc instability model)—to see how far away we could have detected a signal, and set 90% probability limits on the distances (see Table 3 of the paper). The best of these are ~100–200 megaparsec (the worst is just 4 megaparsec, which is basically next door). These results aren’t too interesting yet, they will become more so in the future, and around the time we hit design sensitivity we will start overlapping with electromagnetic measurements of distances for short gamma-ray bursts. However, we can rule out GRB 150906B coming from NGC 3133 at high probability!

The O1 Intermediate Mass Black Hole Binary Paper

Synopsis: O1 Intermediate Mass Black Hole Binary Paper
Read this if: You like intermediate mass black holes (black holes of ~100 solar masses)
Favourite part: The teamwork between different searches

Black holes could come in many sizes. We know of stellar-mass black holes, the collapsed remains of dead stars, which are a few to a few tens of times the mas of our Sun, and we know of (super)massive black holes, lurking in the centres of galaxies, which are tens of thousands to billions of times the mass of our Sun. Between the two, lie the elusive intermediate mass black holes. There have been repeated claims of observational evidence for their existence, but these are notoriously difficult to confirm. Gravitational waves provide a means of confirming the reality of intermediate mass black holes, if they do exist.

The gravitational wave signal emitted by a binary depends upon the mass of its components. More massive objects produce louder signals, but these signals also end at lower frequencies. The merger frequency of a binary is inversely proportional to the total mass. Ground-based detectors can’t detect massive black hole binaries as they are too low frequency, but they can detect binaries of a few hundred solar masses. We look for these in this search.

Our flagship search for binary black holes looks for signals using matched filtering: we compare the data to a bank of template waveforms. The bank extends up to a total mass of 100 solar masses. This search continues above this (there’s actually some overlap as we didn’t want to miss anything, but we shouldn’t have worried). Higher mass binaries are hard to detect as they as shorter, and so more difficult to distinguish from a little blip of noise, which is why this search was treated differently.

As well as using templates, we can do an unmodelled (burst) search for signals by looking for coherent signals in both detectors. This type of search isn’t as sensitive, as you don’t know what you are looking for, but can pick up short signals (like GW150914).

Our search for intermediate mass black holes uses both a modelled search (with templates spanning total masses of 50 to 600 solar masses) and a specially tuned burst search. Both make sure to include low frequency data in their analysis. This work is one of the few cross-working group (CBC for the templated search, and Burst for the unmodelled) projects, and I was pleased with the results.

This is probably where you expect me to say that we didn’t detect anything so we set upper limits. That is actually not the case here: we did detect something! Unfortunately, it wasn’t what we were looking for. We detected GW150914, which was a relief as it did lie within the range we where searching, as well as LVT151012 and GW151226. These were more of a surprise. GW151226 has a total mass of just ~24 solar masses (as measured with cosmological redshift), and so is well outside our bank. It was actually picked up just on the edge, but still, it’s impressive that the searches can find things beyond what they are aiming to pick up. Having found no intermediate mass black holes, we went and set some upper limits. (Yay!)

To set our upper limits, we injected some signals from binaries with specific masses and spins, and then saw how many would have be found with greater significance than our most significant trigger (after excluding GW150914, LVT151012 and GW151226). This is effectively asking the question of when would we see something as significant as this trigger which we think is just noise. This gives us a sensitive time–volume \langle VT \rangle which we have surveyed and found no mergers. We use this number of events to set 90% upper limits on the merge rates R_{90\%} = 2.3/\langle VT \rangle, and define an effective distance D_{\langle VT \rangle} defined so that \langle VT \rangle = T_a (4\pi D_{\langle VT \rangle}^3/3) where T_a is the analysed amount of time. The plot below show our limits on rate and effective distance for our different injections.

Intermediate mass black hole binary search results

Results from the O1 search for intermediate mass black hole binaries. The left panel shows the 90% confidence upper limit on the merger rate. The right panel shows the effective search distance. Each circle is a different injection. All have zero spin, except two 100+100 solar mass sets, where \chi indicates the spin aligned with the orbital angular momentum. Figure 2 of the O1 Intermediate Mass Black Hole Binary Paper.

There are a couple of caveats associated with our limits. The waveforms we use don’t include all the relevant physics (like orbital eccentricity and spin precession). Including everything is hard: we may use some numerical relativity waveforms in the future. However, they should give a good impression on our sensitivity. There’s quite a big improvement compared to previous searches (S6 Burst Search; S6 Templated Search). This comes form the improvement of Advanced LIGO’s sensitivity at low frequencies compared to initial LIGO. Future improvements to the low frequency sensitivity should increase our probability of making a detection.

I spent a lot of time working on this search as I was the review chair. As a reviewer, I had to make sure everything was done properly, and then reported accurately. I think our review team did a thorough job. I was glad when we were done, as I dislike being the bad cop.

 

Advertisements

Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignments

Gravitational waves allow us to infer the properties of binary black holes (two black holes in orbit about each other), but can we use this information to figure out how the black holes and the binary form? In this paper, we show that measurements of the black holes’ spins can help us this out, but probably not until we have at least 100 detections.

Black hole spins

Black holes are described by their masses (how much they bend spacetime) and their spins (how much they drag spacetime to rotate about them). The orientation of the spins relative to the orbit of the binary could tell us something about the history of the binary [bonus note].

We considered four different populations of spin–orbit alignments to see if we could tell them apart with gravitational-wave observations:

  1. Aligned—matching the idealised example of isolated binary evolution. This stands in for the case where misalignments are small, which might be the case if material blown off during a supernova ends up falling back and being swallowed by the black hole.
  2. Isotropic—matching the expectations for dynamically formed binaries.
  3. Equal misalignments at birth—this would be the case if the spins and orbit were aligned before the second supernova, which then tilted the plane of the orbit. (As the binary inspirals, the spins wobble around, so the two misalignment angles won’t always be the same).
  4. Both spins misaligned by supernova kicks, assuming that the stars were aligned with the orbit before exploding. This gives a more general scatter of unequal misalignments, but typically the primary (bigger and first forming) black hole is more misaligned.

These give a selection of possible spin alignments. For each, we assumed that the spin magnitude was the same and had a value of 0.7. This seemed like a sensible idea when we started this study [bonus note], but is now towards the upper end of what we expect for binary black holes.

Hierarchical analysis

To measurement the properties of the population we need to perform a hierarchical analysis: there are two layers of inference, one for the individual binaries, and one of the population.

From a gravitational wave signal, we infer the properties of the source using Bayes’ theorem. Given the data d_\alpha, we want to know the probability that the parameters \mathbf{\Theta}_\alpha have different values, which is written as p(\mathbf{\Theta}_\alpha|d_\alpha). This is calculated using

\displaystyle p(\mathbf{\Theta}_\alpha|d_\alpha) = \frac{p(d_\alpha | \mathbf{\Theta}_\alpha) p(\mathbf{\Theta}_\alpha)}{p(d_\alpha)},

where p(d_\alpha | \mathbf{\Theta}_\alpha) is the likelihood, which we can calculate from our knowledge of the noise in our gravitational wave detectors, p(\mathbf{\Theta}_\alpha) is the prior on the parameters (what we would have guessed before we had the data), and the normalisation constant p(d_\alpha) is called the evidence. We’ll use the evidence again in the next layer of inference.

Our prior on the parameters should actually depend upon what we believe about the astrophysical population. It is different if we believed that Model 1 were true (when we’d only consider aligned spins) than for Model 2. Therefore, we should really write

\displaystyle p(\mathbf{\Theta}_\alpha|d_\alpha, \lambda) = \frac{p(d_\alpha | \mathbf{\Theta}_\alpha,\lambda) p(\mathbf{\Theta}_\alpha,\lambda)}{p(d_\alpha|\lambda)},

where  \lambda denotes which model we are considering.

This is an important point to remember: if you our using our LIGO results to test your theory of binary formation, you need to remember to correct for our choice of prior. We try to pick non-informative priors—priors that don’t make strong assumptions about the physics of the source—but this doesn’t mean that they match what would be expected from your model.

We are interested in the probability distribution for the different models: how many binaries come from each. Given a set of different observations \{d_\alpha\}, we can work this out using another application of Bayes’ theorem (yay)

\displaystyle p(\mathbf{\lambda}|\{d_\alpha\}) = \frac{p(\{d_\alpha\} | \mathbf{\lambda}) p(\mathbf{\lambda})}{p(\{d_\alpha\})},

where p(\{d_\alpha\} | \mathbf{\lambda}) is just all the evidences for the individual events (given that model) multiplied together, p(\mathbf{\lambda}) is our prior for the different models, and p(\{d_\alpha\}) is another normalisation constant.

Now knowing how to go from a set of observations to the probability distribution on the different channels, let’s give it a go!

Results

To test our approach made a set of mock gravitational wave measurements. We generated signals from binaries for each of our four models, and analysed these as we would for real signals (using LALInference). This is rather computationally expensive, and we wanted a large set of events to analyse, so using these results as a guide, we created a larger catalogue of approximate distributions for the inferred source parameters p(\mathbf{\Theta}_\alpha|d_\alpha). We then fed these through our hierarchical analysis. The GIF below shows how measurements of the fraction of binaries from each population tightens up as we get more detections: the true fraction is marked in blue.

Fraction of binaries from each of the four models

Probability distribution for the fraction of binaries from each of our four spin misalignment populations for different numbers of observations. The blue dot marks the true fraction: and equal fraction from all four channels.

The plot shows that we do zoom in towards the true fraction of events from each model as the number of events increases, but there are significant degeneracies between the different models. Notably, it is difficult to tell apart Models 1 and 3, as both have strong support for both spins being nearly aligned. Similarly, there is a degeneracy between Models 2 and 4 as both allow for the two spins to have very different misalignments (and for the primary spin, which is the better measured one, to be quite significantly misaligned).

This means that we should be able to distinguish aligned from misaligned populations (we estimated that as few as 5 events would be needed to distinguish the case that all events came from either Model 1  or Model 2 if those were the only two allowed possibilities). However, it will be more difficult to distinguish different scenarios which only lead to small misalignments from each other, or disentangle whether there is significant misalignment due to big supernova kicks or because binaries are formed dynamically.

The uncertainty of the fraction of events from each model scales roughly with the square root of the number of observations, so it may be slow progress making these measurements. I’m not sure whether we’ll know the answer to how binary black hole form, or who will sit on the Iron Throne first.

arXiv: 1703.06873 [astro-ph.HE]
Journal: Monthly Notices of the Royal Astronomical Society471(3):2801–2811; 2017
Birmingham science summary: Hierarchical analysis of gravitational-wave measurements of binary black hole spin–orbit misalignment (by Simon)
If you like this you might like: Farr et al. (2017)Talbot & Thrane (2017), Vitale et al. (2017), Trifirò et al. (2016), Minogue (2000)

Bonus notes

Spin misalignments and formation histories

If you have two stars forming in a binary together, you’d expect them to be spinning in roughly the same direction, rotating the same way as they go round in their orbit (like our Solar System). This is because they all formed from the same cloud of swirling gas and dust. Furthermore, if two stars are to form a black hole binary that we can detect gravitational waves from, they need to be close together. This means that there can be tidal forces which gently tug the stars to align their rotation with the orbit. As they get older, stars puff up, meaning that if you have a close-by neighbour, you can share outer layers. This transfer of material will tend to align rotate too. Adding this all together, if you have an isolated binary of stars, you might expect that when they collapse down to become black holes, their spins are aligned with each other and the orbit.

Unfortunately, real astrophysics is rarely so clean. Even if the stars were initially rotating the same way as each other, they doesn’t mean that their black hole remnants will do the same. This depends upon how the star collapses. Massive stars explode as supernova, blasting off their outer layers while their cores collapse down to form black holes. Escaping material could carry away angular momentum, meaning that the black hole is spinning in a different direction to its parent star, or material could be blasted off asymmetrically, giving the new black hole a kick. This would change the plane of the binary’s orbit, misaligning the spins.

Alternatively, the binary could be formed dynamically. Instead of two stars living their lives together, we could have two stars (or black holes) come close enough together to form a binary. This is likely to happen in regions where there’s a high density of stars, such as a globular cluster. In this case, since the binary has been randomly assembled, there’s no reason for the spins to be aligned with each other or the orbit. For dynamically assembled binaries, all spin–orbit misalignments are equally probable.

Slow and steady

This project was led by Simon Stevenson. It was one of the first things we started working on at the beginning of his PhD. He has now graduated, and is off to start a new exciting life as a postdoc in Australia. We got a little distracted by other projects, most notably analysing the first detections of gravitational waves. Simon spent a lot of time developing the COMPAS population code, a code to simulate the evolution of binaries. Looking back, it’s impressive how far he’s come. This paper used a simple approximation to to estimate the masses of our black holes: we called it the Post-it note model, as we wrote it down on a single Post-it. Now Simon’s writing papers including the complexities of common-envelope evolution in order to explain LIGO’s actual observations.

GW170104 and me

On 4 January 2017, Advanced LIGO made a new detection of gravitational waves. The signal, which we call GW170104 [bonus note], came from the coalescence of two black holes, which inspiralled together (making that characteristic chirp) and then merged to form a single black hole.

On 4 January 2017, I was just getting up off the sofa when my phone buzzed. My new year’s resolution was to go for a walk every day, and I wanted to make use of the little available sunlight. However, my phone informed me that PyCBC (one or our search algorithms for signals from coalescing binaries) had identified an interesting event. I sat back down. I was on the rota to analyse interesting signals to infer their properties, and I was pretty sure that people would be eager to see results. They were. I didn’t leave the sofa for the rest of the day, bringing my new year’s resolution to a premature end.

Since 4 January, my time has been dominated by working on GW170104 (you might have noticed a lack of blog posts). Below I’ll share some of my war stories from life on the front line of gravitational-wave astronomy, and then go through some of the science we’ve learnt. (Feel free to skip straight to the science, recounting the story was more therapy for me).

Normalised spectrograms for GW170104

Time–frequency plots for GW170104 as measured by Hanford (top) and Livingston (bottom). The signal is clearly visible as the upward sweeping chirp. The loudest frequency is something between E3 and G♯3 on a piano, and it tail off somewhere between D♯4/E♭4 and F♯4/G♭4. Part of Fig. 1 of the GW170104 Discovery Paper.

The story

In the second observing run, the Parameter Estimation group have divided up responsibility for analysing signals into two week shifts. For each rota shift, there is an expert and a rookie. I had assumed that the first slot of 2017 would be a quiet time. The detectors were offline over the holidays, due back online on 4 January, but the instrumentalists would probably find some extra tinkering they’d want to do, so it’d probably slip a day, and then the weather would be bad, so we’d probably not collect much data anyway… I was wrong. Very wrong. The detectors came back online on time, and there was a beautifully clean detection on day one.

My partner for the rota was Aaron Zimmerman. 4 January was his first day running parameter estimation on live signals. I think I would’ve run and hidden underneath my duvet in his case (I almost did anyway, and I lived through the madness of our first detection GW150914), but he rose to the occasion. We had first results after just a few hours, and managed to send out a preliminary sky localization to our astronomer partners on 6 January. I think this was especially impressive as there were some difficulties with the initial calibration of the data. This isn’t a problem for the detection pipelines, but does impact the parameters which we infer, particularly the sky location. The Calibration group worked quickly, and produced two updates to the calibration. We therefore had three different sets of results (one per calibration) by 6 January [bonus note]!

Producing the final results for the paper was slightly more relaxed. Aaron and I conscripted volunteers to help run all the various permutations of the analysis we wanted to double-check our results [bonus note].

Estimated waveforms from different models for GW170104

Recovered gravitational waveforms from analysis of GW170104. The broader orange band shows our estimate for the waveform without assuming a particular source (wavelet). The narrow blue bands show results if we assume it is a binary black hole (BBH) as predicted by general relativity. The two match nicely, showing no evidence for any extra features not included in the binary black hole models. Figure 4 of the GW170104 Discovery Paper.

I started working on GW170104 through my parameter estimation duties, and continued with paper writing.

Ahead of the second observing run, we decided to assemble a team to rapidly write up any interesting binary detections, and I was recruited for this (I think partially because I’m not too bad at writing and partially because I was in the office next to John Veitch, one of the chairs of the Compact Binary Coalescence group,so he can come and check that I wasn’t just goofing off eating doughnuts). We soon decided that we should write a paper about GW170104, and you can decide whether or not we succeeded in doing this rapidly…

Being on the paper writing team has given me huge respect for the teams who led the GW150914 and GW151226 papers. It is undoubtedly one of the most difficult things I’ve ever done. It is extremely hard to absorb negative remarks about your work continuously for months [bonus note]—of course people don’t normally send comments about things that they like, but that doesn’t cheer you up when you’re staring at an inbox full of problems that need fixing. Getting a collaboration of 1000 people to agree on a paper is like herding cats while being a small duckling.

On of the first challenges for the paper writing team was deciding what was interesting about GW170104. It was another binary black hole coalescence—aren’t people getting bored of them by now? The signal was quieter than GW150914, so it wasn’t as remarkable. However, its properties were broadly similar. It was suggested that perhaps we should title the paper “GW170104: The most boring gravitational-wave detection”.

One potentially interesting aspect was that GW170104 probably comes from greater distance than GW150914 or GW151226 (but perhaps not LVT151012) [bonus note]. This might make it a good candidate for testing for dispersion of gravitational waves.

Dispersion occurs when different frequencies of gravitational waves travel at different speeds. A similar thing happens for light when travelling through some materials, which leads to prisms splitting light into a spectrum (and hence the creation of Pink Floyd album covers). Gravitational waves don’t suffered dispersion in general relativity, but do in some modified theories of gravity.

It should be easier to spot dispersion in signals which have travelled a greater distance, as the different frequencies have had more time to separate out. Hence, GW170104 looks pretty exciting. However, being further away also makes the signal quieter, and so there is more uncertainty in measurements and it is more difficult to tell if there is any dispersion. Dispersion is also easier to spot if you have a larger spread of frequencies, as then there can be more spreading between the highest and lowest frequencies. When you throw distance, loudness and frequency range into the mix, GW170104 doesn’t always come out on top, depending upon the particular model for dispersion: sometimes GW150914’s loudness wins, other times GW151226’s broader frequency range wins. GW170104 isn’t too special here either.

Even though GW170104 didn’t look too exciting, we started work on a paper, thinking that we would just have a short letter describing our observations. The Compact Binary Coalescence group decided that we only wanted a single paper, and we wouldn’t bother with companion papers as we did for GW150914. As we started work, and dug further into our results, we realised that actually there was rather a lot that we could say.

I guess the moral of the story is that even though you might be overshadowed by the achievements of your siblings, it doesn’t mean that you’re not awesome. There might not be one outstanding feature of GW170104, but there are lots of little things that make it interesting. We are still at the beginning of understanding the properties of binary black holes, and each new detection adds a little more to our picture.

I think GW170104 is rather neat, and I hope you do too.

As we delved into the details of our results, we realised there was actually a lot of things that we could say about GW170104, especially when considered with our previous observations. We ended up having to move some of the technical details and results to Supplemental Material. With hindsight, perhaps it would have been better to have a companion paper or two. However, I rather like how packed with science this paper is.

The paper, which Physical Review Letters have kindly accommodated, despite its length, might not be as polished a classic as the GW150914 Discovery Paper, but I think they are trying to do different things. I rarely ever refer to the GW150914 Discovery Paper for results (more commonly I use it for references), whereas I think I’ll open up the GW170104 Discovery Paper frequently to look up numbers.

Although perhaps not right away, I’d quite like some time off first. The weather’s much better now, perfect for walking…

Looking east across Lake Annecy, France

Success! The view across Lac d’Annecy. Taken on a stroll after the Gravitational Wave Physics and Astronomy Workshop, the weekend following the publication of the paper.

The science

Advanced LIGO’s first observing run was hugely successful. Running from 12 September 2015 until 19 January 2016, there were two clear gravitational-wave detections, GW1501914 and GW151226, as well as a less certain candidate signal LVT151012. All three (assuming that they are astrophysical signals) correspond to the coalescence of binary black holes.

The second observing run started 30 November 2016. Following the first observing run’s detections, we expected more binary black hole detections. On 4 January, after we had collected almost 6 days’ worth of coincident data from the two LIGO instruments [bonus note], there was a detection.

The searches

The signal was first spotted by an online analysis. Our offline analysis of the data (using refined calibration and extra information about data quality) showed that the signal, GW170104, is highly significant. For both GstLAL and PyCBC, search algorithms which use templates to search for binary signals, the false alarm rate is estimated to be about 1 per 70,000 years.

The signal is also found in unmodelled (burst) searches, which look for generic, short gravitational wave signals. Since these are looking for more general signals than just binary coalescences, the significance associated with GW170104 isn’t as great, and coherent WaveBurst estimates a false alarm rate of 1 per 20,000 years. This is still pretty good! Reconstructions of the waveform from unmodelled analyses also match the form expected for binary black hole signals.

The search false alarm rates are the rate at which you’d expect something this signal-like (or more signal-like) due to random chance, if you data only contained noise and no signals. Using our knowledge of the search pipelines, and folding in some assumptions about the properties of binary black holes, we can calculate a probability that GW170104 is a real astrophysical signal. This comes out to be greater than 1 - (3\times10^5) = 0.99997.

The source

As for the previous gravitational wave detections, GW170104 comes from a binary black hole coalescence. The initial black holes were 31.2^{+8.4}_{-6.0} M_\odot and 19.4^{+5.3}_{-5.9} M_\odot (where 1 M_\odot is the mass of our Sun), and the final black hole was 48.7^{+5.7}_{-4.6} M_\odot. The quoted values are the median values and the error bars denote the central 90% probable range. The plot below shows the probability distribution for the masses; GW170104 neatly nestles in amongst the other events.

Binary black hole masses

Estimated masses for the two black holes in the binary m_1 \geq m_2. The two-dimensional shows the probability distribution for GW170104 as well as 50% and 90% contours for all events. The one-dimensional plot shows results using different waveform models. The dotted lines mark the edge of our 90% probability intervals. Figure 2 of the GW170104 Discovery Paper.

GW150914 was the first time that we had observed stellar-mass black holes with masses greater than around 25 M_\odot. GW170104 has similar masses, showing that our first detection was not a fluke, but there really is a population of black holes with masses stretching up into this range.

Black holes have two important properties: mass and spin. We have good measurements on the masses of the two initial black holes, but not the spins. The sensitivity of the form of the gravitational wave to spins can be described by two effective spin parameters, which are mass-weighted combinations of the individual spins.

  • The effective inspiral spin parameter \chi_\mathrm{eff} qualifies the impact of the spins on the rate of inspiral, and where the binary plunges together to merge. It ranges from +1, meaning both black holes are spinning as fast as possible and rotate in the same direction as the orbital motion, to −1, both black holes spinning as fast as possible but in the opposite direction to the way that the binary is orbiting. A value of 0 for \chi_\mathrm{eff} could mean that the black holes are not spinning, that their rotation axes are in the orbital plane (instead of aligned with the orbital angular momentum), or that one black hole is aligned with the orbital motion and the other is antialigned, so that their effects cancel out.
  • The effective precession spin parameter \chi_\mathrm{p} qualifies the amount of precession, the way that the orbital plane and black hole spins wobble when they are not aligned. It is 0 for no precession, and 1 for maximal precession.

We can place some constraints on \chi_\mathrm{eff}, but can say nothing about \chi_\mathrm{p}. The inferred value of the effective inspiral spin parameter is -0.12^{+0.21}_{-0.30}. Therefore, we disfavour large spins aligned with the orbital angular momentum, but are consistent with small aligned spins, misaligned spins, or spins antialigned with the angular momentum. The value is similar to that for GW150914, which also had a near-zero, but slightly negative \chi_\mathrm{eff} of -0.06^{+0.14}_{-0.14}.

Effective inspiral and precession spin parameters

Estimated effective inspiral spin parameter \chi_\mathrm{eff} and effective precession spin \chi_\mathrm{p} parameter. The two-dimensional shows the probability distribution for GW170104 as well as 50% and 90% contours. The one-dimensional plot shows results using different waveform models, as well as the prior probability distribution. The dotted lines mark the edge of our 90% probability intervals. We learn basically nothing about precession. Part of Figure 3 of the GW170104 Discovery Paper.

Converting the information about \chi_\mathrm{eff}, the lack of information about \chi_\mathrm{p}, and our measurement of the ratio of the two black hole masses, into probability distributions for the component spins gives the plots below [bonus note]. We disfavour (but don’t exclude) spins aligned with the orbital angular momentum, but can’t say much else.

Orientation and magnitudes of the two spins

Estimated orientation and magnitude of the two component spins. The distribution for the more massive black hole is on the left, and for the smaller black hole on the right. The probability is binned into areas which have uniform prior probabilities, so if we had learnt nothing, the plot would be uniform. Part of Figure 3 of the GW170104 Discovery Paper.

One of the comments we had on a draft of the paper was that we weren’t making any definite statements about the spins—we would have if we could, but we can’t for GW170104, at least for the spins of the two inspiralling black holes. We can be more definite about the spin of the final black hole. If two similar mass black holes spiral together, the angular momentum from the orbit is enough to give a spin of around 0.7. The spins of the component black holes are less significant, and can make it a bit higher of lower. We infer a final spin of 0.64^{+0.09}_{-0.20}; there is a tail of lower spin values on account of the possibility that the two component black holes could be roughly antialigned with the orbital angular momentum.

Final black hole mass and spin

Estimated mass M_\mathrm{f} and spina_\mathrm{f} for the final black hole. The two-dimensional shows the probability distribution for GW170104 as well as 50% and 90% contours. The one-dimensional plot shows results using different waveform models. The dotted lines mark the edge of our 90% probability intervals. Figure 6 of the GW170104 Supplemental Material (Figure 11 of the arXiv version).

If you’re interested in parameter describing GW170104, make sure to check out the big table in the Supplemental Material. I am a fan of tables [bonus note].

Merger rates

Adding the first 11 days of coincident data from the second observing run (including the detection of GW170104) to the results from the first observing run, we find merger rates consistent with those from the first observing run.

To calculate the merger rates, we need to assume a distribution of black hole masses, and we use two simple models. One uses a power law distribution for the primary (larger) black hole and a uniform distribution for the mass ratio; the other uses a distribution uniform in the logarithm of the masses (both primary and secondary). The true distribution should lie somewhere between the two. The power law rate density has been updated from 31^{+42}_{-21}\mathrm{Gpc^{-3}\,yr^{-1}} to 32^{+33}_{-20}\mathrm{Gpc^{-3}\,yr^{-1}}, and the uniform in log rate density goes from 97^{+135}_{-67}~\mathrm{Gpc^{-3}\,yr^{-1}} to 103^{+110}_{-63}~\mathrm{Gpc^{-3}\,yr^{-1}}. The median values stay about the same, but the additional data have shrunk the uncertainties a little.

Astrophysics

The discoveries from the first observing run showed that binary black holes exist and merge. The question is now how exactly they form? There are several suggested channels, and it could be there is actually a mixture of different formation mechanisms in action. It will probably require a large number of detections before we can make confident statements about the the probable formation mechanisms; GW170104 is another step towards that goal.

There are two main predicted channels of binary formation:

  • Isolated binary evolution, where a binary star system lives its life together with both stars collapsing to black holes at the end. To get the black holes close enough to merge, it is usually assumed that the stars go through a common envelope phase, where one star puffs up so that the gravity of its companion can steal enough material that they lie in a shared envelope. The drag from orbiting inside this then shrinks the orbit.
  • Dynamical evolution where black holes form in dense clusters and a binary is created by dynamical interactions between black holes (or stars) which get close enough to each other.

It’s a little artificial to separate the two, as there’s not really such a thing as an isolated binary: most stars form in clusters, even if they’re not particularly large. There are a variety of different modifications to the two main channels, such as having a third companion which drives the inner binary to merge, embedding the binary is a dense disc (as found in galactic centres), or dynamically assembling primordial black holes (formed by density perturbations in the early universe) instead of black holes formed through stellar collapse.

All the channels can predict black holes around the masses of GW170104 (which is not surprising given that they are similar to the masses of GW150914).

The updated rates are broadly consistent with most channels too. The tightening of the uncertainty of the rates means that the lower bound is now a little higher. This means some of the channels are now in tension with the inferred rates. Some of the more exotic channels—requiring a third companion (Silsbee & Tremain 2017; Antonini, Toonen & Hamers 2017) or embedded in a dense disc (Bartos et al. 2016; Stone, Metzger & Haiman 2016; Antonini & Rasio 2016)—can’t explain the full rate, but I don’t think it was ever expected that they could, they are bonus formation mechanisms. However, some of the dynamical models are also now looking like they could predict a rate that is a bit low (Rodriguez et al. 2016; Mapelli 2016; Askar et al. 2017; Park et al. 2017). Assuming that this result holds, I think this may mean that some of the model parameters need tweaking (there are more optimistic predictions for the merger rates from clusters which are still perfectly consistent), that this channel doesn’t contribute all the merging binaries, or both.

The spins might help us understand formation mechanisms. Traditionally, it has been assumed that isolated binary evolution gives spins aligned with the orbital angular momentum. The progenitor stars were probably more or less aligned with the orbital angular momentum, and tides, mass transfer and drag from the common envelope would serve to realign spins if they became misaligned. Rodriguez et al. (2016) gives a great discussion of this. Dynamically formed binaries have no correlation between spin directions, and so we would expect an isotropic distribution of spins. Hence it sounds quite simple: misaligned spins indicates dynamical formation (although we can’t tell if the black holes are primordial or stellar), and aligned spins indicates isolated binary evolution. The difficulty is the traditional assumption for isolated binary evolution potentially ignores a number of effects which could be important. When a star collapses down to a black hole, there may be a supernova explosion. There is an explosion of matter and neutrinos and these can give the black hole a kick. The kick could change the orbital plane, and so misalign the spin. Even if the kick is not that big, if it is off-centre, it could torque the black hole, causing it to rotate and so misalign the spin that way. There is some evidence that this can happen with neutron stars, as one of the pulsars in the double pulsar system shows signs of this. There could also be some instability that changes the angular momentum during the collapse of the star, possibly with different layers rotating in different ways [bonus note]. The spin of the black hole would then depend on how many layers get swallowed. This is an area of research that needs to be investigated further, and I hope the prospect of gravitational wave measurements spurs this on.

For GW170104, we know the spins are not large and aligned with the orbital angular momentum. This might argue against one variation of isolated binary evolution, chemically homogeneous evolution, where the progenitor stars are tidally locked (and so rotate aligned with the orbital angular momentum and each other). Since the stars are rapidly spinning and aligned, you would expect the final black holes to be too, if the stars completely collapse down as is usually assumed. If the stars don’t completely collapse down though, it might still be possible that GW170104 fits with this model. Aside from this, GW170104 is consistent with all the other channels.

Effective inspiral spin parameters

Estimated effective inspiral spin parameter \chi_\mathrm{eff} for all events. To indicate how much (or little) we’ve learnt, the prior probability distribution for GW170104 is shown (the other priors are similar).All of the events have |\chi_\mathrm{eff}| < 0.35 at 90% probability. Figure 5 of the GW170104 Supplemental Material (Figure 10 of the arXiv version). This is one of my favourite plots [bonus note].

If we start looking at the population of events, we do start to notice something about the spins. All of the inferred values of \chi_\mathrm{eff} are close to zero. Only GW151226 is inconsistent with zero. These values could be explained if spins are typically misaligned (with the orbital angular momentum or each other) or if the spins are typically small (or both). We know that black holes spins can be large from observations of X-ray binaries, so it would be odd if they are small for binary black holes. Therefore, we have a tentative hint that spins are misaligned. We can’t say why the spins are misaligned, but it is intriguing. With more observations, we’ll be able to confirm if it is the case that spins are typically misaligned, and be able to start pinning down the distribution of spin magnitudes and orientations (as well as the mass distribution). It will probably take a while to be able to say anything definite though, as we’ll probably need about 100 detections.

Tests of general relativity

As well as giving us an insight into the properties of black holes, gravitational waves are the perfect tools for testing general relativity. If there are any corrections to general relativity, you’d expect them to be most noticeable under the most extreme conditions, where gravity is strong and spacetime is rapidly changing, exactly as in a binary black hole coalescence.

For GW170104 we repeated tests previously performed. Again, we found no evidence of deviations.

We added extra terms to to the waveform and constrained their potential magnitudes. The results are pretty much identical to at the end of the first observing run (consistent with zero and hence general relativity). GW170104 doesn’t add much extra information, as GW150914 typically gives the best constraints on terms that modify the post-inspiral part of the waveform (as it is louder), while GW151226 gives the best constraint on the terms which modify the inspiral (as it has the longest inspiral).

We also chopped the waveform at a frequency around that of the innermost stable orbit of the remnant black hole, which is about where the transition from inspiral to merger and ringdown occurs, to check if the low frequency and high frequency portions of the waveform give consistent estimates for the final mass and spin. They do.

We have also done something slightly new, and tested for dispersion of gravitational waves. We did something similar for GW150914 by putting a limit on the mass of the graviton. Giving the graviton mass is one way of adding dispersion, but we consider other possible forms too. In all cases, results are consistent with there being no dispersion. While we haven’t discovered anything new, we can update our gravitational wave constraint on the graviton mass of less than 7.7 \times 10^{-23}~\mathrm{eV}/c^2.

The search for counterparts

We don’t discuss observations made by our astronomer partners in the paper (they are not our results). A number (28 at the time of submission) of observations were made, and I expect that there will be a series of papers detailing these coming soon. So far papers have appeared from:

  • AGILE—hard X-ray and gamma-ray follow-up. They didn’t find any gamma-ray signals, but did identify a weak potential X-ray signal occurring about 0.46 s before GW170104. It’s a little odd to have a signal this long before the merger. The team calculate a probability for such a coincident to happen by chance, and find quite a small probability, so it might be interesting to follow this up more (see the INTEGRAL results below), but it’s probably just a coincidence (especially considering how many people did follow-up the event).
  • AstroSat-CZTI and GROWTH—a collaboration of observations across a range of wavelengths. They don’t find any hard X-ray counterparts. They do follow up on a bright optical transient ATLASaeu, suggested as a counterpart to GW170104, and conclude that this is a likely counterpart of long, soft gamma-ray burst GRB170105A.
  • ATLAS and Pan-STARRS—optical follow-up. They identified a bright optical transient 23 hours after GW170104, ATLAS17aeu. This could be a counterpart to GRB170105A. It seems unlikely that there is any mechanism that could allow for a day’s delay between the gravitational wave emission and an electromagnetic signal. However, the team calculate a small probability (few percent) of finding such a coincidence in sky position and time, so perhaps it is worth pondering. I wouldn’t put any money on it without a distance estimate for the source: assuming it’s a normal afterglow to a gamma-ray burst, you’d expect it to be further away than GW170104’s source.
  • Borexino—a search for low-energy neutrinos. This paper also discusses GW150914 and GW151226. In all cases, the observed rate of neutrinos is consistent with the expected background.
  • Fermi (GBM and LAT)—gamma-ray follow-up. They covered an impressive fraction of the sky localization, but didn’t find anything.
  • INTEGRAL—gamma-ray and hard X-ray observations. No significant emission is found, which makes the event reported by AGILE unlikely to be a counterpart to GW170104, although they cannot completely rule it out.
  • The intermediate Palomar Transient Factory—an optical survey. While searching, they discovered iPTF17cw, a broad-line type Ic supernova which is unrelated to GW170104 but interesting as it an unusual find.

If you are interested in what has been reported so far (no compelling counterpart candidates yet to my knowledge), there is an archive of GCN Circulars sent about GW170104.

Summary

Advanced LIGO has made its first detection of the second observing run. This is a further binary black hole coalescence. GW170104 has taught us that:

  • The discoveries of the first observing run were not a fluke. There really is a population of stellar mass black holes with masses above 25 M_\odot out there, and we can study them with gravitational waves.
  • Binary black hole spins may be typically misaligned or small. This is not certain yet, but it is certainly worth investigating potential mechanisms that could cause misalignment.
  • General relativity still works, even after considering our new tests.
  • If someone asks you to write a discovery paper, run. Run and do not look back.

Title: GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2
Journal:
 Physical Review Letters; 118(22):221101(17); 2017 (Supplemental Material)
arXiv: 1706.01812 [gr-qc]
Data release: LIGO Open Science Center
Science summary: 
 GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2

Bonus notes

Naming

Gravitational wave signals (at least the short ones, which are all that we have so far), are named by their detection date. GW170104 was discovered 2017 January 4. This isn’t too catchy, but is at least better than the ID number in our database of triggers (G268556) which is used in corresponding with our astronomer partners before we work out if the “GW” title is justified.

Previous detections have attracted nicknames, but none has stuck for GW170104. Archisman Ghosh suggested the Perihelion Event, as it was detected a few hours before the Earth reached its annual point closest to the Sun. I like this name, its rather poetic.

More recently, Alex Nitz realised that we should have called GW170104 the Enterprise-D Event, as the USS Enterprise’s registry number was NCC-1701. For those who like Star Trek: the Next Generation, I hope you have fun discussing whether GW170104 is the third or fourth (counting LVT151012) detection: “There are four detections!

The 6 January sky map

I would like to thank the wi-fi of Chiltern Railways for their role in producing the preliminary sky map. I had arranged to visit London for the weekend (because my rota slot was likely to be quiet… ), and was frantically working on the way down to check results so they could be sent out. I’d also like to thank John Veitch for putting together the final map while I was stuck on the Underground.

Binary black hole waveforms

The parameter estimation analysis works by matching a template waveform to the data to see how well it matches. The results are therefore sensitive to your waveform model, and whether they include all the relevant bits of physics.

In the first observing run, we always used two different families of waveforms, to see what impact potential errors in the waveforms could have. The results we presented in discovery papers used two quick-to-calculate waveforms. These include the effects of the black holes’ spins in different ways

  • SEOBNRv2 has spins either aligned or antialigned with the orbital angular momentum. Therefore, there is no precession (wobbling of orientation, like that of a spinning top) of the system.
  • IMRPhenomPv2 includes an approximate description of precession, packaging up the most important information about precession into a single parameter \chi_\mathrm{p}.

For GW150914, we also performed a follow-up analysis using a much more expensive waveform SEOBNRv3 which more fully includes the effect of both spins on precession. These results weren’t ready at the time of the announcement, because the waveform is laborious to run.

For GW170104, there were discussions that using a spin-aligned waveform was old hat, and that we should really only use the two precessing models. Hence, we started on the endeavour of producing SEOBNRv3 results. Fortunately, the code has been sped up a little, although it is still not quick to run. I am extremely grateful to Scott Coughlin (one of the folks behind Gravity Spy), Andrea Taracchini and Stas Babak for taking charge of producing results in time for the paper, in what was a Herculean effort.

I spent a few sleepless nights, trying to calculate if the analysis was converging quickly enough to make our target submission deadline, but it did work out in the end. Still, don’t necessarily expect we’ll do this for a all future detections.

Since the waveforms have rather scary technical names, in the paper we refer to IMRPhenomPv2 as the effective precession model and SEOBNRv3 as the full precession model.

On distance

Distance measurements for gravitational wave sources have significant uncertainties. The distance is difficult to measure as it determined from the signal amplitude, but this is also influences by the binary’s inclination. A signal could either be close and edge on or far and face on-face off.

Distance and inclination

Estimated luminosity distance D_\mathrm{L} and binary inclination angle \theta_{JN}. The two-dimensional shows the probability distribution for GW170104 as well as 50% and 90% contours. The one-dimensional plot shows results using different waveform models. The dotted lines mark the edge of our 90% probability intervals. Figure 4 of the GW170104 Supplemental Material (Figure 9 of the arXiv version).

The uncertainty on the distance rather awkwardly means that we can’t definitely say that GW170104 came from a further source than GW150914 or GW151226, but it’s a reasonable bet. The 90% credible intervals on the distances are 250–570 Mpc for GW150194, 250–660 Mpc for GW151226, 490–1330 Mpc for GW170104 and 500–1500 Mpc for LVT151012.

Translating from a luminosity distance to a travel time (gravitational waves do travel at the speed of light, our tests of dispersion are consistent wit that!), the GW170104 black holes merged somewhere between 1.3 and 3.0 billion years ago. This is around the time that multicellular life first evolved on Earth, and means that black holes have been colliding longer than life on Earth has been reproducing sexually.

Time line

A first draft of the paper (version 2; version 1 was a copy-and-paste of the Boxing Day Discovery Paper) was circulated to the Compact Binary Coalescence and Burst groups for comments on 4 March. This was still a rough version, and we wanted to check that we had a good outline of the paper. The main feedback was that we should include more about the astrophysical side of things. I think the final paper has a better balance, possibly erring on the side of going into too much detail on some of the more subtle points (but I think that’s better than glossing over them).

A first proper draft (version 3) was released to the entire Collaboration on 12 March in the middle of our Collaboration meeting in Pasadena. We gave an oral presentation the next day (I doubt many people had read the paper by then). Collaboration papers are usually allowed two weeks for people to comment, and we followed the same procedure here. That was not a fun time, as there was a constant trickle of comments. I remember waking up each morning and trying to guess how many emails would be in my inbox–I normally low-balled this.

I wasn’t too happy with version 3, it was still rather rough. The members of the Paper Writing Team had been furiously working on our individual tasks, but hadn’t had time to look at the whole. I was much happier with the next draft (version 4). It took some work to get this together, following up on all the comments and trying to address concerns was a challenge. It was especially difficult as we got a series of private comments, and trying to find a consensus probably made us look like the bad guys on all sides. We released version 4 on 14 April for a week of comments.

The next step was approval by the LIGO and Virgo executive bodies on 24 April. We prepared version 5 for this. By this point, I had lost track of which sentences I had written, which I had merely typed, and which were from other people completely. There were a few minor changes, mostly adding technical caveats to keep everyone happy (although they do rather complicate the flow of the text).

The paper was circulated to the Collaboration for a final week of comments on 26 April. Most comments now were about typos and presentation. However, some people will continue to make the same comment every time, regardless of how many times you explain why you are doing something different. The end was in sight!

The paper was submitted to Physical Review Letters on 9 May. I was hoping that the referees would take a while, but the reports were waiting in my inbox on Monday morning.

The referee reports weren’t too bad. Referee A had some general comments, Referee B had some good and detailed comments on the astrophysics, and Referee C gave the paper a thorough reading and had some good suggestions for clarifying the text. By this point, I have been staring at the paper so long that some outside perspective was welcome. I was hoping that we’d have a more thorough review of the testing general relativity results, but we had Bob Wald as one of our Collaboration Paper reviewers (the analysis, results and paper are all reviewed internally), so I think we had already been held to a high standard, and there wasn’t much left to say.

We put together responses to the reports. There were surprisingly few comments from the Collaboration at this point. I guess that everyone was getting tired. The paper was resubmitted and accepted on 20 May.

One of the suggestions of Referee A was to include some plots showing the results of the searches. People weren’t too keen on showing these initially, but after much badgering they were convinced, and it was decided to put these plots in the Supplemental Material which wouldn’t delay the paper as long as we got the material submitted by 26 May. This seemed like plenty of time, but it turned out to be rather frantic at the end (although not due to the new plots). The video below is an accurate representation of us trying to submit the final version.

I have an email which contains the line “Many Bothans died to bring us this information” from 1 hour and 18 minutes before the final deadline.

After this, things were looking pretty good. We had returned the proofs of the main paper (I had a fun evening double checking the author list. Yes, all of them). We were now on version 11 of the paper.

Of course, there’s always one last thing. On 31 May, the evening before publication, Salvo Vitale spotted a typo. Nothing serious, but annoying. The team at Physical Review Letters were fantastic, and took care of it immediately!

There’ll still be one more typo, there always is…

Looking back, it is clear that the principal bottle-neck in publishing the results is getting the Collaboration to converge on the paper. I’m not sure how we can overcome this… Actually, I have some ideas, but none that wouldn’t involve some form of doomsday device.

Detector status

The sensitivities of the LIGO Hanford and Livinston detectors are around the same as they were in the first observing run. After the success of the first observing run, the second observing run is the difficult follow up album. Livingston has got a little better, while Hanford is a little worse. This is because the Livingston team concentrate on improving low frequency sensitivity whereas the Hanford team focused on improving high frequency sensitivity. The Hanford team increased the laser power, but this introduces some new complications. The instruments are extremely complicated machines, and improving sensitivity is hard work.

The current plan is to have a long commissioning break after the end of this run. The low frequency tweaks from Livingston will be transferred to Hanford, and both sites will work on bringing down other sources of noise.

While the sensitivity hasn’t improved as much as we might have hoped, the calibration of the detectors has! In the first observing run, the calibration uncertainty for the first set of published results was about 10% in amplitude and 10 degrees in phase. Now, uncertainty is better than 5% in amplitude and 3 degrees in phase, and people are discussing getting this down further.

Spin evolution

As the binary inspirals, the orientation of the spins will evolve as they precess about. We always quote measurements of the spins at a point in the inspiral corresponding to a gravitational wave frequency of 20 Hz. This is most convenient for our analysis, but you can calculate the spins at other points. However, the resulting probability distributions are pretty similar at other frequencies. This is because the probability distributions are primarily determined by the combination of three things: (i) our prior assumption of a uniform distribution of spin orientations, (ii) our measurement of the effective inspiral spin, and (iii) our measurement of the mass ratio. A uniform distribution stays uniform as spins evolve, so this is unaffected, the effective inspiral spin is approximately conserved during inspiral, so this doesn’t change much, and the mass ratio is constant. The overall picture is therefore qualitatively similar at different moments during the inspiral.

Footnotes

I love footnotes. It was challenging for me to resist having any in the paper.

Gravity waves

It is possible that internal gravity waves (that is oscillations of the material making up the star, where the restoring force is gravity, not gravitational waves, which are ripples in spacetime), can transport angular momentum from the core of a star to its outer envelope, meaning that the two could rotate in different directions (Rogers, Lin & Lau 2012). I don’t think anyone has studied this yet for the progenitors of binary black holes, but it would be really cool if gravity waves set the properties of gravitational wave sources.

I really don’t want to proof read the paper which explains this though.

Colour scheme

For our plots, we use a consistent colour coding for our events. GW150914 is blue; LVT151012 is green; GW151226 is red–orange, and GW170104 is purple. The colour scheme is designed to be colour blind friendly (although adopting different line styles would perhaps be more distinguishable), and is implemented in Python in the Seaborn package as colorblind. Katerina Chatziioannou, who made most of the plots showing parameter estimation results is not a fan of the colour combinations, but put a lot of patient effort into polishing up the plots anyway.

GW150914—The papers II

GW150914, The Event to its friends, was our first direct observation of gravitational waves. To accompany the detection announcement, the LIGO Scientific & Virgo Collaboration put together a suite of companion papers, each looking at a different aspect of the detection and its implications. Some of the work we wanted to do was not finished at the time of the announcement; in this post I’ll go through the papers we have produced since the announcement.

The papers

I’ve listed the papers below in an order that makes sense to me when considering them together. Each started off as an investigation to check that we really understood the signal and were confident that the inferences made about the source were correct. We had preliminary results for each at the time of the announcement. Since then, the papers have evolved to fill different niches [bonus points note].

13. The Basic Physics Paper

Title: The basic physics of the binary black hole merger GW150914
arXiv:
 1608.01940 [gr-qc]
Journal:
 Annalen der Physik529(1–2):1600209(17); 2017

The Event was loud enough to spot by eye after some simple filtering (provided that you knew where to look). You can therefore figure out some things about the source with back-of-the-envelope calculations. In particular, you can convince yourself that the source must be two black holes. This paper explains these calculations at a level suitable for a keen high-school or undergraduate physics student.

More details: The Basic Physics Paper summary

14. The Precession Paper

Title: Improved analysis of GW150914 using a fully spin-precessing waveform model
arXiv:
 1606.01210 [gr-qc]
Journal:
 Physical Review X; 6(4):041014(19); 2016

To properly measure the properties of GW150914’s source, you need to compare the data to predicted gravitational-wave signals. In the Parameter Estimation Paper, we did this using two different waveform models. These models include lots of features binary black hole mergers, but not quite everything. In particular, they don’t include all the effects of precession (the wibbling of the orbit because of the black holes spins). In this paper, we analyse the signal using a model that includes all the precession effects. We find results which are consistent with our initial ones.

More details: The Precession Paper summary

15. The Systematics Paper

Title: Effects of waveform model systematics on the interpretation of GW150914
arXiv:
 1611.07531 [gr-qc]
Journal: 
Classical & Quantum Gravity; 34(10):104002(48); 2017

To check how well our waveform models can measure the properties of the source, we repeat the parameter-estimation analysis on some synthetic signals. These fake signals are calculated using numerical relativity, and so should include all the relevant pieces of physics (even those missing from our models). This paper checks to see if there are any systematic errors in results for a signal like GW150914. It looks like we’re OK, but this won’t always be the case.

More details: The Systematics Paper summary

16. The Numerical Relativity Comparison Paper

Title: Directly comparing GW150914 with numerical solutions of Einstein’s equations for binary black hole coalescence
arXiv:
 1606.01262 [gr-qc]
Journal:
 Physical Review D; 94(6):064035(30); 2016

Since GW150914 was so short, we can actually compare the data directly to waveforms calculated using numerical relativity. We only have a handful of numerical relativity simulations, but these are enough to give an estimate of the properties of the source. This paper reports the results of this investigation. Unsurprisingly, given all the other checks we’ve done, we find that the results are consistent with our earlier analysis.

If you’re interested in numerical relativity, this paper also gives a nice brief introduction to the field.

More details: The Numerical Relativity Comparison Paper summary

The Basic Physics Paper

Synopsis: Basic Physics Paper
Read this if: You are teaching a class on gravitational waves
Favourite part: This is published in Annalen der Physik, the same journal that Einstein published some of his monumental work on both special and general relativity

It’s fun to play with LIGO data. The LIGO Open Science Center (LOSC), has put together a selection of tutorials to show you some of the basics of analysing signals. I wouldn’t blame you if you went of to try them now, instead of reading the rest of this post. Even though it would mean that no-one read this sentence. Purple monkey dishwasher.

The LOSC tutorials show you how to make your own version of some of the famous plots from the detection announcement. This paper explains how to go from these, using the minimum of theory, to some inferences about the signal’s source: most significantly that it must be the merger of two black holes.

GW150914 is a chirp. It sweeps up from low frequency to high. This is what you would expect of a binary system emitting gravitational waves. The gravitational waves carry away energy and angular momentum, causing the binary’s orbit to shrink. This means that the orbital period gets shorter, and the orbital frequency higher. The gravitational wave frequency is twice the orbital frequency (for circular orbits), so this goes up too.

The rate of change of the frequency depends upon the system’s mass. To first approximation, it is determined by the chirp mass,

\displaystyle \mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}},

where m_1 and m_2 are the masses of the two components of the binary. By looking at the signal (go on, try the LOSC tutorials), we can estimate the gravitational wave frequency f_\mathrm{GW} at different times, and so track how it changes. You can rewrite the equation for the rate of change of the gravitational wave frequency \dot{f}_\mathrm{GW}, to give an expression for the chirp mass

\displaystyle \mathcal{M} = \frac{c^3}{G}\left(\frac{5}{96} \pi^{-8/3} f_\mathrm{GW}^{-11/3} \dot{f}_\mathrm{GW}\right)^{3/5}.

Here c and G are the speed of light and the gravitational constant, which usually pop up in general relativity equations. If you use this formula (perhaps fitting for the trend f_\mathrm{GW}) you can get an estimate for the chirp mass. By fiddling with your fit, you’ll see there is some uncertainty, but you should end up with a value around 30 M_\odot [bonus note].

Next, let’s look at the peak gravitational wave frequency (where the signal is loudest). This should be when the binary finally merges. The peak is at about 150~\mathrm{Hz}. The orbital frequency is half this, so f_\mathrm{orb} \approx 75~\mathrm{Hz}. The orbital separation R is related to the frequency by

\displaystyle R = \left[\frac{GM}{(2\pi f_\mathrm{orb})^2}\right]^{1/3},

where M = m_1 + m_2 is the binary’s total mass. This formula is only strictly true in Newtonian gravity, and not in full general relativity, but it’s still a reasonable approximation. We can estimate a value for the total mass from our chirp mass; if we assume the two components are about the same mass, then M = 2^{6/5} \mathcal{M} \approx 70 M_\odot. We now want to compare the binary’s separation to the size of black hole with the same mass. A typical size for a black hole is given by the Schwarzschild radius

\displaystyle R_\mathrm{S} = \frac{2GM}{c^2}.

If we divide the binary separation by the Schwarzschild radius we get the compactness \mathcal{R} = R/R_\mathrm{S} \approx 1.7. A compactness of \sim 1 could only happen for black holes. We could maybe get a binary made of two neutron stars to have a compactness of \sim2, but the system is too heavy to contain two neutron stars (which have a maximum mass of about 3 M_\odot). The system is so compact, it must contain black holes!

What I especially like about the compactness is that it is unaffected by cosmological redshifting. The expansion of the Universe will stretch the gravitational wave, such that the frequency gets lower. This impacts our estimates for the true orbital frequency and the masses, but these cancel out in the compactness. There’s no arguing that we have a highly relativistic system.

You might now be wondering what if we don’t assume the binary is equal mass (you’ll find it becomes even more compact), or if we factor in black hole spin, or orbital eccentricity, or that the binary will lose mass as the gravitational waves carry away energy? The paper looks at these and shows that there is some wiggle room, but the signal really constrains you to have black holes. This conclusion is almost as inescapable as a black hole itself.

There are a few things which annoy me about this paper—I think it could have been more polished; “Virgo” is improperly capitalised on the author line, and some of the figures are needlessly shabby. However, I think it is a fantastic idea to put together an introductory paper like this which can be used to show students how you can deduce some properties of GW150914’s source with some simple data analysis. I’m happy to be part of a Collaboration that values communicating our science to all levels of expertise, not just writing papers for specialists!

During my undergraduate degree, there was only a single lecture on gravitational waves [bonus note]. I expect the topic will become more popular now. If you’re putting together such a course and are looking for some simple exercises, this paper might come in handy! Or if you’re a student looking for some project work this might be a good starting reference—bonus points if you put together some better looking graphs for your write-up.

If this paper has whetted your appetite for understanding how different properties of the source system leave an imprint in the gravitational wave signal, I’d recommend looking at the Parameter Estimation Paper for more.

The Precession Paper

Synopsis: Precession Paper
Read this if: You want our most detailed analysis of the spins of GW150914’s black holes
Favourite part: We might have previously over-estimated our systematic error

The Basic Physics Paper explained how you could work out some properties of GW150914’s source with simple calculations. These calculations are rather rough, and lead to estimates with large uncertainties. To do things properly, you need templates for the gravitational wave signal. This is what we did in the Parameter Estimation Paper.

In our original analysis, we used two different waveforms:

  • The first we referred to as EOBNR, short for the lengthy technical name SEOBNRv2_ROM_DoubleSpin. In short: This includes the spins of the two black holes, but assumes they are aligned such that there’s no precession. In detail: The waveform is calculated by using effective-one-body dynamics (EOB), an approximation for the binary’s motion calculated by transforming the relevant equations into those for a single object. The S at the start stands for spin: the waveform includes the effects of both black holes having spins which are aligned (or antialigned) with the orbital angular momentum. Since the spins are aligned, there’s no precession. The EOB waveforms are tweaked (or calibrated, if you prefer) by comparing them to numerical relativity (NR) waveforms, in particular to get the merger and ringdown portions of the waveform right. While it is easier to solve the EOB equations than full NR simulations, they still take a while. To speed things up, we use a reduced-order model (ROM), a surrogate model constructed to match the waveforms, so we can go straight from system parameters to the waveform, skipping calculating the dynamics of the binary.
  • The second we refer to as IMRPhenom, short for the technical IMRPhenomPv2. In short: This waveform includes the effects of precession using a simple approximation that captures the most important effects. In detail: The IMR stands for inspiral–merger–ringdown, the three phases of the waveform (which are included in in the EOBNR model too). Phenom is short for phenomenological: the waveform model is constructed by tuning some (arbitrary, but cunningly chosen) functions to match waveforms calculated using a mix of EOB, NR and post-Newtonian theory. This is done for black holes with (anti)aligned spins to first produce the IMRPhenomD model. This is then twisted up, to include the dominant effects of precession to make IMRPhenomPv2. This bit is done by combining the two spins together to create a single parameter, which we call \chi_\mathrm{p}, which determines the amount of precession. Since we are combining the two spins into one number, we lose a bit of the richness of the full dynamics, but we get the main part.

The EOBNR and IMRPhenom models are created by different groups using different methods, so they are useful checks of each other. If there is an error in our waveforms, it would lead to systematic errors in our estimated paramters

In this paper, we use another waveform model, a precessing EOBNR waveform, technically known as SEOBNRv3. This model includes all the effects of precession, not just the simple model of the IMRPhenom model. However, it is also computationally expensive, meaning that the analysis takes a long time (we don’t have a ROM to speed things up, as we do for the other EOBNR waveform)—each waveform takes over 20 times as long to calculate as the IMRPhenom model [bonus note].

Our results show that all three waveforms give similar results. The precessing EOBNR results are generally more like the IMRPhenom results than the non-precessing EOBNR results are. The plot below compares results from the different waveforms [bonus note].

Comparison of results from non-precessing EOBNR, precessing IMRPhenom and precessing EOBNR waveforms

Comparison of parameter estimates for GW150914 using different waveform models. The bars show the 90% credible intervals, the dark bars show the uncertainty on the 5%, 50% and 95% quantiles from the finite number of posterior samples. The top bar is for the non-precessing EOBNR model, the middle is for the precessing IMRPhenom model, and the bottom is for the fully precessing EOBNR model. Figure 1 of the Precession Paper; see Figure 9 for a comparison of averaged EOBNR and IMRPhenom results, which we have used for our overall results.

We had used the difference between the EOBNR and IMRPhenom results to estimate potential systematic error from waveform modelling. Since the two precessing models are generally in better agreement, we have may have been too pessimistic here.

The main difference in results is that our new refined analysis gives tighter constraints on the spins. From the plot above you can see that the uncertainty for the spin magnitudes of the heavier black hole a_1, the lighter black hole a_2 and the final black hole (resulting from the coalescence) a_\mathrm{f}, are slightly narrower. This makes sense, as including the extra imprint from the full effects of precession gives us a bit more information about the spins. The plots below show the constraints on the spins from the two precessing waveforms: the distributions are more condensed with the new results.

Black hole spins estimated using precessing IMRPhenom and EOBNR waveforms

Comparison of orientations and magnitudes of the two component spins. The spin is perfectly aligned with the orbital angular momentum if the angle is 0. The left disk shows results using the precessing IMRPhenom model, the right using the precessing EOBNR model. In each, the distribution for the more massive black hole is on the left, and for the smaller black hole on the right. Adapted from Figure 5 of the Parameter Estimation Paper and Figure 4 of the Precession Paper.

In conclusion, this analysis had shown that included the full effects of precession do give slightly better estimates of the black hole spins. However, it is safe to trust the IMRPhenom results.

If you are looking for the best parameter estimates for GW150914, these results are better than the original results in the Parameter Estimation Paper. However, I would prefer the results in the O1 Binary Black Hole Paper, even though this doesn’t use the fully precessing EOBNR waveform, because we do use an updated calibration of the detector data. Neither the choice of waveform or the calibration make much of an impact on the results, so for most uses it shouldn’t matter too much.

The Systematics Paper

Synopsis: Systematics Paper
Read this if: You want to know how parameter estimation could fare for future detections
Favourite part: There’s no need to panic yet

The Precession Paper highlighted how important it is to have good waveform templates. If there is an error in our templates, either because of modelling or because we are missing some physics, then our estimated parameters could be wrong—we would have a source of systematic error.

We know our waveform models aren’t perfect, so there must be some systematic error, the question is how much? From our analysis so far (such as the good agreement between different waveforms in the Precession Paper), we think that systematic error is less significant than the statistical uncertainty which is a consequence of noise in the detectors. In this paper, we try to quantify systematic error for GW150914-like systems.

To asses systematic errors, we analyse waveforms calculated by numerical relativity simulations into data around the time of GW150914. Numerical relativity exactly solves Einstein’s field equations (which govern general relativity), so results of these simulations give the most accurate predictions for the form of gravitational waves. As we know the true parameters for the injected waveforms, we can compare these to the results of our parameter estimation analysis to check for biases.

We use waveforms computed by two different codes: the Spectral Einstein Code (SpEC) and the Bifunctional Adaptive Mesh (BAM) code. (Don’t the names make them sound like such fun?) Most waveforms are injected into noise-free data, so that we know that any offset in estimated parameters is dues to the waveforms and not detector noise; however, we also tried a few injections into real data from around the time of GW150914. The signals are analysed using our standard set-up as used in the Parameter Estimation Paper (a couple of injections are also included in the Precession Paper, where they are analysed with the fully precessing EOBNR waveform to illustrate its accuracy).

The results show that in most cases, systematic errors from our waveform models are small. However, systematic errors can be significant for some orientations of precessing binaries. If we are looking at the orbital plane edge on, then there can be errors in the distance, the mass ratio and the spins, as illustrated below [bonus note]. Thankfully, edge-on binaries are quieter than face-on binaries, and so should make up only a small fraction of detected sources (GW150914 is most probably face off). Furthermore, biases are only significant for some polarization angles (an angle which describes the orientation of the detectors relative to the stretch/squash of the gravitational wave polarizations). Factoring this in, a rough estimate is that about 0.3% of detected signals would fall into the unlucky region where waveform biases are important.

Inclination dependence of parameter recovery

Parameter estimation results for two different GW150914-like numerical relativity waveforms for different inclinations and polarization angles. An inclination of 0^\circ means the binary is face on, 180^\circ means it face off, and an inclination around 90^\circ is edge on. The bands show the recovered 90% credible interval; the dark lines the median values, and the dotted lines show the true values. The (grey) polarization angle \psi = 82^\circ was chosen so that the detectors are approximately insensitive to the h_+ polarization. Figure 4 of the Systematics Paper.

While it seems that we don’t have to worry about waveform error for GW150914, this doesn’t mean we can relax. Other systems may show up different aspects of waveform models. For example, our approximants only include the dominant modes (spherical harmonic decompositions of the gravitational waves). Higher-order modes have more of an impact in systems where the two black holes are unequal masses, or where the binary has a higher total mass, so that the merger and ringdown parts of the waveform are more important. We need to continue work on developing improved waveform models (or at least, including our uncertainty about them in our analysis), and remember to check for biases in our results!

The Numerical Relativity Comparison Paper

Synopsis: Numerical Relativity Comparison Paper
Read this if: You are really suspicious of our waveform models, or really like long tables or numerical data
Favourite part: We might one day have enough numerical relativity waveforms to do full parameter estimation with them

In the Precession Paper we discussed how important it was to have accurate waveforms; in the Systematics Paper we analysed numerical relativity waveforms to check the accuracy of our results. Since we do have numerical relativity waveforms, you might be wondering why we don’t just use these in our analysis? In this paper, we give it a go.

Our standard parameter-estimation code (LALInference) randomly hops around parameter space, for each set of parameters we generate a new waveform and see how this matches the data. This is an efficient way of exploring the parameter space. Numerical relativity waveforms are too computationally expensive to generate one each time we hop. We need a different approach.

The alternative, is to use existing waveforms, and see how each of them match. Each simulation gives the gravitational waves for a particular mass ratio and combination of spins, we can scale the waves to examine different total masses, and it is easy to consider what the waves would look like if measured at a different position (distance, inclination or sky location). Therefore, we can actually cover a fair range of possible parameters with a given set of simulations.

To keep things quick, the code averages over positions, this means we don’t currently get an estimate on the redshift, and so all the masses are given as measured in the detector frame and not as the intrinsic masses of the source.

The number of numerical relativity simulations is still quite sparse, so to get nice credible regions, a simple Gaussian fit is used for the likelihood. I’m not convinced that this capture all the detail of the true likelihood, but it should suffice for a broad estimate of the width of the distributions.

The results of this analysis generally agree with those from our standard analysis. This is a relief, but not surprising given all the other checks that we have done! It hints that we might be able to get slightly better measurements of the spins and mass ratios if we used more accurate waveforms in our standard analysis, but the overall conclusions are  sound.

I’ve been asked if since these results use numerical relativity waveforms, they are the best to use? My answer is no. As well as potential error from the sparse sampling of simulations, there are several small things to be wary of.

  • We only have short numerical relativity waveforms. This means that the analysis only goes down to a frequency of 30~\mathrm{Hz} and ignores earlier cycles. The standard analysis includes data down to 20~\mathrm{Hz}, and this extra data does give you a little information about precession. (The limit of the simulation length also means you shouldn’t expect this type of analysis for the longer LVT151012 or GW151226 any time soon).
  • This analysis doesn’t include the effects of calibration uncertainty. There is some uncertainty in how to convert from the measured signal at the detectors’ output to the physical strain of the gravitational wave. Our standard analysis fold this in, but that isn’t done here. The estimates of the spin can be affected by miscalibration. (This paper also uses the earlier calibration, rather than the improved calibration of the O1 Binary Black Hole Paper).
  • Despite numerical relativity simulations producing waveforms which include all higher modes, not all of them are actually used in the analysis. More are included than in the standard analysis, so this will probably make negligible difference.

Finally, I wanted to mention one more detail, as I think it is not widely appreciated. The gravitational wave likelihood is given by an inner product

\displaystyle L \propto \exp \left[- \int_{-\infty}^{\infty}  \mathrm{d}f  \frac{|s(f) - h(f)|^2}{S_n(f)}  \right],

where s(f) is the signal, h(f) is our waveform template and S_n(f) is the noise spectral density (PSD). These are the three things we need to know to get the right answer. This paper, together with the Precession Paper and the Systematics Paper, has been looking at error from our waveform models h(f). Uncertainty from the calibration of s(f) is included in the standard analysis, so we know how to factor this in (and people are currently working on more sophisticated models for calibration error). This leaves the noise PSD S_n(f)

The noise PSD varies all the time, so it needs to be estimated from the data. If you use a different stretch of data, you’ll get a different estimate, and this will impact your results. Ideally, you would want to estimate from the time span that includes the signal itself, but that’s tricky as there’s a signal in the way. The analysis in this paper calculates the noise power spectral density using a different time span and a different method than our standard analysis; therefore, we expect some small difference in the estimated parameters. This might be comparable to (or even bigger than) the difference from switching waveforms! We see from the similarity of results that this cannot be a big effect, but it means that you shouldn’t obsess over small differences, thinking that they could be due to waveform differences, when they could just come from estimation of the noise PSD.

Lots of work is currently going into making sure that the numerator term |s(f) - h(f)|^2 is accurate. I think that the denominator S_n(f) needs attention too. Since we have been kept rather busy, including uncertainty in PSD estimation will have to wait for a future set papers.

Bonus notes

Finches

100 bonus points to anyone who folds up the papers to make beaks suitable for eating different foods.

The right answer

Our current best estimate for the chirp mass (from the O1 Binary Black Hole Paper) would be 30.6^{+1.9}_{-1.6} M_\odot. You need proper templates for the gravitational wave signal to calculate this. If you factor in the the gravitational wave gets redshifted (shifted to lower frequency by the expansion of the Universe), then the true chirp mass of the source system is 28.1^{+1.8}_{-1.5} M_\odot.

Formative experiences

My one undergraduate lecture on gravitational waves was the penultimate lecture of the fourth-year general relativity course. I missed this lecture, as I had a PhD interview (at the University of Birmingham). Perhaps if I had sat through it, my research career would have been different?

Good things come…

The computational expense of a waveform is important, as when we are doing parameter estimation, we calculate lots (tens of millions) of waveforms for different parameters to see how they match the data. Before O1, the task of using SEOBNRv3 for parameter estimation seemed quixotic. The first detection, however, was enticing enough to give it a try. It was a truly heroic effort by Vivien Raymond and team that produced these results—I am slightly suspicious the Vivien might actually be a wizard.

GW150914 is a short signal, meaning it is relatively quick to analyse. Still, it required us using all the tricks at our disposal to get results in a reasonable time. When it came time to submit final results for the Discovery Paper, we had just about 1,000 samples from the posterior probability distribution for the precessing EOBNR waveform. For comparison, we had over 45,000 sample for the non-precessing EOBNR waveform. 1,000 samples isn’t enough to accurately map out the probability distributions, so we decided to wait and collect more samples. The preliminary results showed that things looked similar, so there wouldn’t be a big difference in the science we could do. For the Precession Paper, we finally collected 2,700 samples. This is still a relatively small number, so we carefully checked the uncertainty in our results due to the finite number of samples.

The Precession Paper has shown that it is possible to use the precessing EOBNR for parameter estimation, but don’t expect it to become the norm, at least until we have a faster implementation of it. Vivien is only human, and I’m sure his family would like to see him occasionally.

Parameter key

In case you are wondering what all the symbols in the results plots stand for, here are their usual definitions. First up, the various masses

  • m_1—the mass of the heavier black hole, sometimes called the primary black hole;
  • m_2—the mass of the lighter black hole, sometimes called the secondary black hole;
  • M—the total mass of the binary, M = m_1 + m_2;
  • M_\mathrm{f}—the mass of the final black hole (after merger);
  • \mathcal{M}—the chirp mass, the combination of the two component masses which sets how the binary inspirals together;
  • q—the mass ratio, q = m_1/m_2 \leq 1. Confusingly, numerical relativists often use the opposite  convention q = m_2/m_1 \geq 1 (which is why the Numerical Relativity Comparison Paper discusses results in terms of 1/q: we can keep the standard definition, but all the numbers are numerical relativist friendly).

A superscript “source” is sometimes used to distinguish the actual physical masses of the source from those measured by the detector which have been affected by cosmological redshift. The measured detector-frame mass is m = (1 + z) m^\mathrm{source}, where m^\mathrm{source} is the true, redshift-corrected source-frame mass and z is the redshift. The mass ratio q is independent of the redshift. On the topic of redshift, we have

  • z—the cosmological redshift (z = 0 would be now);
  • D_\mathrm{L}—the luminosity distance.

The luminosity distance sets the amplitude of the signal, as does the orientation which we often describe using

  • \iota—the inclination, the angle between the line of sight and the orbital angular momentum (\boldsymbol{L}). This is zero for a face-on binary.
  • \theta_{JN}—the angle between the line of sight (\boldsymbol{N}) and the total angular momentum of the binary (\boldsymbol{J}); this is approximately equal to the inclination, but is easier to use for precessing binaries.

As well as masses, black holes have spins

  • a_1—the (dimensionless) spin magnitude of the heavier black hole, which is between 0 (no spin) and 1 (maximum spin);
  • a_2—the (dimensionless) spin magnitude of the lighter black hole;
  • a_\mathrm{f}—the (dimensionless) spin magnitude of the final black hole;
  • \chi_\mathrm{eff}—the effective inspiral spin parameter, a combinations of the two component spins which has the largest impact on the rate of inspiral (think of it as the spin equivalent of the chirp mass);
  • \chi_\mathrm{p}—the effective precession spin parameter, a combination of spins which indicate the dominant effects of precession, it’s 0 for no precession and 1 for maximal precession;
  • \theta_{LS_1}—the primary tilt angle, the angle between the orbital angular momentum and the heavier black holes spin (\boldsymbol{S_1}). This is zero for aligned spin.
  • \theta_{LS_2}—the secondary tilt angle, the angle between the orbital angular momentum and the lighter black holes spin (\boldsymbol{S_2}).
  • \phi_{12}—the angle between the projections of the two spins on the orbital plane.

The orientation angles change in precessing binaries (when the spins are not perfectly aligned or antialigned with the orbital angular momentum), so we quote values at a reference time corresponding to when the gravitational wave frequency is 20~\mathrm{Hz}. Finally (for the plots shown here)

  • \psi—the polarization angle, this is zero when the detector arms are parallel to the h_+ polarization’s stretch/squash axis.

For more detailed definitions, check out the Parameter Estimation Paper or the LALInference Paper.

First low frequency all-sky search for continuous gravitational wave signals

It is the time of year for applying for academic jobs and so I have been polishing up my CV. In doing so I spotted that I had missed the publication of one of the LIGO Scientific–Virgo Collaboration papers. In my defence, it was published the week of 8–14 February, which saw the publication of one or two other papers [bonus note]. The paper I was missing is on a search for continuous gravitational waves.

Continuous gravitational waves are near constant hums. Unlike the chirps of coalescing binaries, continuous signals are always on. We think that they could be generated by rotating neutron stars, assuming that they are not perfectly smooth. This is the first search to look for continuous waves from anywhere on the sky with frequencies below 50 Hz. The gravitational-wave frequency is twice the rotational frequency of the neutron star, so this is the first time we’ve looked for neutron stars spinning slower than 25 times per second (which is still pretty fast, I’d certainly feel more than a little queasy). The search uses data from the second and fourth Virgo Science Runs (VSR2 and VSR4): the detector didn’t behave as well in VSR3, which is why that data isn’t used.

The frequency of a rotating neutron star isn’t quite constant for two reasons. First, as the Earth orbits around the Sun it’ll move towards and away from the source. This leads to the signal being Doppler shifted. For a given position on the sky, this can be corrected for, and this is done in the search. Second, the neutron star will slow down (a process known as spin-down) because it looses energy and angular momentum. There are various processes that could slow a neutron star, emitting gravitational waves is one, some form of internal sloshing around is another which could also cause things to speed up, or perhaps some braking from its magnetic field. We’re not too sure exactly how quickly spin down will happen, so we search over a range of possible values from -1.0\times10^{-10}~\mathrm{Hz\,s^{-1}} to +1.5\times10^{-11}~\mathrm{Hz\,s^{-1}}.

The particular search technique used is called FrequencyHough. This chops the detector output into different chunks of time. In each we calculate how much power is at each frequency. We then look for a pattern, where we can spot a signal across different times, allowing for some change from spin-down. Recognising the track of a signal with a consistent frequency evolution is done using a Hough transform, a technique from image processing that is good at spotting lines.

The search didn’t find any signals. This is not too surprising. Therefore, we did the usual thing of setting some upper limits. The plot below shows 90% confidence limits (that is where we’d expect to detect 9/10 signals) on the signal amplitude at different frequencies.

Upper limits at different frequencies

90% confidence upper limits on the gravitational-wave strain at different frequencies. Each dot is for a different 1 Hz band. Some bands are noisy and feature instrumental artefacts which have to be excluded from the analysis, these are noted as the filled (magenta) circles. In this case, the upper limit only applies to the part of the band away from the disturbance. Figure 12 of Aasi et al. (2016).

Given that the paper only reports a non-detection, it is rather lengthy. The opening sections do give a nice introduction to continuous waves and how we hunt for them, so this might be a good paper is you’re new to the area but want to learn some of the details. Be warned that it does use \jmath = \sqrt{-1} for some reason. After the introduction, it does get technical, so it’s probably only for insomniacs. However, if you like a good conspiracy and think we might be hiding something, the appendices go through all the details of removing instrumental noise and checking outliers found by the search.

In summary, this was the first low-frequency search for continuous gravitational waves. We didn’t find anything in the best data from the initial detector era, but the advanced detectors will be much more sensitive to this frequency range. Slowly rotating neutron stars can’t hide forever.

arXiv: 1510.03621 [astro-ph.IM]
Journal: Physical Review D; 93(4):042007(25); 2016
Science summary: First search for low frequency continuous gravitational waves emitted by unseen neutron stars
Greatest regret:
 I didn’t convince the authors to avoid using “air quotes” around jargon.

Bonus note

Better late than never

I feel less guilty about writing a late blog post about this paper as I know that it has been a long time in the making. As a collaboration, we are careful in reviewing our results; this can sometimes lead to delays in announcing results, but hopefully means that we get the right answer. This paper took over three years to review, a process which included over 85 telecons!

Going the distance: Mapping host galaxies of LIGO and Virgo sources in three dimensions using local cosmography and targeted follow-up

GW150914 claimed the title of many firsts—it was the first direct observation of gravitational waves, the first observation of a binary black hole system, the first observation of two black holes merging, the first time time we’ve tested general relativity in such extreme conditions… However, there are still many firsts for gravitational-wave astronomy yet to come (hopefully, some to be accompanied by cake). One of the most sought after, is the first is signal to have a clear electromagnetic counterpart—a glow in some part of the spectrum of light (from radio to gamma-rays) that we can observe with telescopes.

Identifying a counterpart is challenging, as it is difficult to accurately localise a gravitational-wave source. electromagnetic observers must cover a large area of sky before any counterparts fade. Then, if something is found, it can be hard to determine if that is from the same source as the gravitational waves, or some thing else…

To help the search, it helps to have as much information as possible about the source. Especially useful is the distance to the source. This can help you plan where to look. For nearby sources, you can cross-reference with galaxy catalogues, and perhaps pick out the biggest galaxies as the most likely locations for the source [bonus note]. Distance can also help plan your observations: you might want to start with regions of the sky where the source would be closer and so easiest to spot, or you may want to prioritise points where it is further and so you’d need to observe longer to detect it (I’m not sure there’s a best strategy, it depends on the telescope and the amount of observing time available). In this paper we describe a method to provide easy-to-use distance information, which could be supplied to observers to help their search for a counterpart.

Going the distance

This work is the first spin-off from the First 2 Years trilogy of papers, which looked a sky localization and parameter estimation for binary neutron stars in the first two observing runs of the advance-detector era. Binary neutron star coalescences are prime candidates for electromagnetic counterparts as we think there should be a bigger an explosion as they merge. I was heavily involved in the last two papers of the trilogy, but this study was led by Leo Singer: I think I mostly annoyed Leo by being a stickler when it came to writing up the results.

3D localization with the two LIGO detectors

Three-dimensional localization showing the 20%, 50%, and 90% credible levels for a typical two-detector early Advanced LIGO event. The Earth is shown at the centre, marked by \oplus. The true location is marked by the cross. Leo poetically described this as looking like the seeds of the jacaranda tree, and less poetically as potato chips. Figure 1 of Singer et al. (2016).

The idea is to provide a convenient means of sharing a 3D localization for a gravitational wave source. The full probability distribution is rather complicated, but it can be made more manageable if you break it up into pixels on the sky. Since astronomers need to decide where to point their telescopes, breaking up the 3D information along different lines of sight, should be useful for them.

Each pixel covers a small region of the sky, and along each line of sight, the probability distribution for distance D can be approximated using an ansatz

\displaystyle p(D|\mathrm{data}) \propto D^2\exp\left[-\frac{(D - \mu)^2}{2\sigma}\right],

where \mu and \sigma are calculated for each pixel individually.  The form of this ansatz can be understood as the posterior probability distribution is proportional to the product of the prior and the likelihood. Our prior is that sources are uniformly distributed in volume, which means \propto D^2, and the likelihood can often be well approximated as a Gaussian distribution, which gives the other piece [bonus note].

The ansatz doesn’t always fit perfectly, but it performs well on average. Considering the catalogue of binary neutron star signals used in the earlier papers, we find that roughly 50% of the time sources are found within the 50% credible volume, 90% are found in the 90% volume, etc.

The 3D localization is easy to calculate, and Leo has worked out a cunning way to evaluate the ansatz with BAYESTAR, our rapid sky localization code, meaning that we can produce it on minute time-scales. This means that observers should have something to work with straight-away, even if we’ll need to wait a while for the full, final results. We hope that this will improve prospects for finding counterparts—some potential examples are sketched out in the penultimate section of the paper.

If you are interested in trying out the 3D information, there is a data release and the supplement contains a handy Python tutorial. We are hoping that the Collaboration will use the format for alerts for LIGO and Virgo’s upcoming observing run (O2).

arXiv: 1603.07333 [astro-ph.HE]; 1605.04242 [astro-ph.IM]
Journal: Astrophysical Journal Letters; 829(1):L15(7); 2016; Astrophysical Journal Supplement Series; 226(1):10(8); 2016
Data release: Going the distance
Favourite crisp flavour: Salt & vinegar
Favourite jacaranda: Jacaranda mimosifolia

Bonus notes

Catalogue shopping

The Event’s source has a luminosity distance of around 250–570 Mpc. This is sufficiently distant that galaxy catalogues are incomplete and not much use when it comes to searching. GW151226 and LVT151012 have similar problems, being at around the same distance or even further.

The gravitational-wave likelihood

For the professionals interested in understanding more about the shape of the likelihood, I’d recommend Cutler & Flanagan (1994). This is a fantastic paper which contains many clever things [bonus bonus note]. This work is really the foundation of gravitational-wave parameter estimation. From it, you can see how the likelihood can be approximated as a Gaussian. The uncertainty can then be evaluated using Fisher matrices. Many studies have been done using Fisher matrices, but it important to check that this is a valid approximation, as nicely explained in Vallisneri (2008). I ran into a case when it didn’t during my PhD.

Mergin’

As a reminder that smart people make mistakes, Cutler & Flanagan have a typo in the title of arXiv posting of their paper. This is probably the most important thing to take away from this paper.

Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data

The most recent, and most sensitive, all-sky search for continuous gravitational waves shows no signs of a detection. These signals from rotating neutron stars remain elusive. New data from the advanced detectors may change this, but we will have to wait a while to find out. This at least gives us time to try to figure out what to do with a detection, should one be made.

New years and new limits

The start of the new academic year is a good time to make resolutions—much better than wet and windy January. I’m trying to be tidier and neater in my organisation. Amid cleaning up my desk, which is covered in about an inch of papers, I uncovered this recent Collaboration paper, which I had lost track of.

The paper is the latest in the continuous stream of non-detections of continuous gravitational waves. These signals could come from rotating neutron stars which are deformed or excited in some way, and the hope that from such an observation we could learn something about the structure of neutron stars.

The search uses old data from initial LIGO’s sixth science run. Searches for continuous waves require lots of computational power, so they can take longer than even our analyses of binary neutron star coalescences. This is a semi-coherent search, like the recent search of the Orion spur—somewhere between an incoherent search, which looks for signal power of any form in the detectors, and a fully coherent search, which looks for signals which exactly match the way a template wave evolves [bonus note]. The big difference compared to the Orion spur search, is that this one looks at the entire sky. This makes it less sensitive in those narrow directions, but means we are not excluding the possibility of sources from other locations.

Part of the Galaxy searched

Artist’s impression of the local part of the Milky Way. The yellow cones mark the extent of the Orion Spur spotlight search, and the pink circle shows the equivalent sensitivity of this all-sky search. Green stars indicate known pulsars. Original image: NASA/JPL-Caltech/ESO/R. Hurt.

The search identified 16 outliers, but an examination of all of these showed they could be explained either as an injected signal or as detector noise. Since no signals were found, we can instead place some upper limits on the strength of signals.

The plot below translates the calculated upper limits (above which there would have been a ~75%–95% chance of us detected the signal) into the size of neutron star deformations. Each curve shows the limits on detectable signals at different distance, depending upon their frequency and the rate of change of their frequency. The dotted lines show limits on ellipticity \varepsilon, a measure of how bumpy the neutron star is. Larger deformations mean quicker changes of frequency and produce louder signals, therefore they can can be detected further away.

Limits on detectable signals and ellipticities

Range of the PowerFlux search for rotating neutron stars assuming that spin-down is entirely due to gravitational waves. The solid lines show the upper limits as a function of the gravitational-wave frequency and its rate of change; the dashed lines are the corresponding limits on ellipticity, and the dotted line marks the maximum searched spin-down. Figure 6 of Abbott et al. (2016).

Neutron stars are something like giant atomic nuclei. Figuring the properties of the strange matter that makes up neutron stars is an extremely difficult problem. We’ll never be able to recreate such exotic matter in the laboratory. Gravitational waves give us a rare means of gathering experimental data on how this matter behaves. However, exactly how we convert a measurement of a signal into constraints on the behaviour of the matter is still uncertain. I think that making a detection might only be the first step in understanding the sources of continuous gravitational waves.

arXiv: 1605.03233 [gr-qc]
Journal: Physical Review D; 94(4):042002(14); 2016
Other new academic year resolution:
 To attempt to grow a beard. Beard stroking helps you think, right?

Bonus note

The semi-coherent search

As the first step of this search, the PowerFlux algorithm looks for power that changes in frequency as expected for a rotating neutron star: it factors in Doppler shifting due to the motion of the Earth and a plausible spin down (slowing of the rotation) of the neutron star. As a follow up, the Loosely Coherent algorithm is used, which checks for signals which match short stretches of similar templates. Any candidates to make it through all stages of refinement are then examined in more detail. This search strategy is described in detail for the S5 all-sky search.

Parameter estimation on gravitational waves from neutron-star binaries with spinning components

In gravitation-wave astronomy, some parameters are easier to measure than others. We are sensitive to properties which change the form of the wave, but sometimes the effect of changing one parameter can be compensated by changing another. We call this a degeneracy. In signals for coalescing binaries (two black holes or neutron stars inspiralling together), there is a degeneracy between between the masses and spins. In this recently published paper, we look at what this means for observing binary neutron star systems.

History

This paper has been something of an albatross, and I’m extremely pleased that we finally got it published. I started working on it when I began my post-doc at Birmingham in 2013. Back then I was sharing an office with Ben Farr, and together with others in the Parameter Estimation Group, we were thinking about the prospect of observing binary neutron star signals (which we naively thought were the most likely) in LIGO’s first observing run.

One reason that this work took so long is that binary neutron star signals can be computationally expensive to analyse [bonus note]. The signal slowly chirps up in frequency, and can take up to a minute to sweep through the range of frequencies LIGO is sensitive to. That gives us a lot of gravitational wave to analyse. (For comparison, GW150914 lasted 0.2 seconds). We need to calculate waveforms to match to the observed signals, and these can be especially complicated when accounting for the effects of spin.

A second reason is shortly after submitting the paper in August 2015, we got a little distracted

This paper was the third of a trilogy look at measuring the properties of binary neutron stars. I’ve written about the previous instalment before. We knew that getting the final results for binary neutron stars, including all the important effects like spin, would take a long time, so we planned to follow up any detections in stages. A probable sky location can be computed quickly, then we can have a first try at estimating other parameters like masses using waveforms that don’t include spin, then we go for the full results with spin. The quicker results would be useful for astronomers trying to find any explosions that coincided with the merger of the two neutron stars. The first two papers looked at results from the quicker analyses (especially at sky localization); in this one we check what effect neglecting spin has on measurements.

What we did

We analysed a population of 250 binary neutron star signals (these are the same as the ones used in the first paper of the trilogy). We used what was our best guess for the sensitivity of the two LIGO detectors in the first observing run (which was about right).

The simulated neutron stars all have small spins of less than 0.05 (where 0 is no spin, and 1 would be the maximum spin of a black hole). We expect neutron stars in these binaries to have spins of about this range. The maximum observed spin (for a neutron star not in a binary neutron star system) is around 0.4, and we think neutron stars should break apart for spins of 0.7. However, since we want to keep an open mind regarding neutron stars, when measuring spins we considered spins all the way up to 1.

What we found

Our results clearly showed the effect of the mass–spin degeneracy. The degeneracy increases the uncertainty for both the spins and the masses.

Even though the true spins are low, we find that across the 250 events, the median 90% upper limit on the spin of the more massive (primary) neutron star is 0.70, and the 90% limit on the less massive (secondary) black hole is 0.86. We learn practically nothing about the spin of the secondary, but a little more about the spin of the primary, which is more important for the inspiral. Measuring spins is hard.

The effect of the mass–spin degeneracy for mass measurements is shown in the plot below. Here we show a random selection of events. The banana-shaped curves are the 90% probability intervals. They are narrow because we can measure a particular combination of masses, the chirp mass, really well. The mass–spin degeneracy determines how long the banana is. If we restrict the range of spins, we explore less of the banana (and potentially introduce an offset in our results).

Neutron star mass distributions

Rough outlines for 90% credible regions for component masses for a random assortments of signals. The circles show the true values. The coloured lines indicate the extent of the distribution with different limits on the spins. The grey area is excluded from our convention on masses m_1 \geq m_2. Figure 5 from Farr et al. (2016).

Although you can’t see it in the plot above, including spin does also increase the uncertainty in the chirp mass too. The plots below show the standard deviation (a measure width of the posterior probability distribution), divided by the mean for several mass parameters. This gives a measure of the fractional uncertainty in our measurements. We show the chirp mass \mathcal{M}_\mathrm{c}, the mass ratio q = m_2/m_1 and the total mass M = m_1 + m_2, where m_1 and m_2 are the masses of the primary and secondary neutron stars respectively. The uncertainties are small for louder signals (higher signal-to-noise ratio). If we neglect the spin, the true chirp mass can lie outside the posterior distribution, the average is about 5 standard deviations from the mean, but if we include spin, the offset is just 0.7 from the mean (there’s still some offset as we’re allowing for spins all the way up to 1).

Mass measurements for binary neutron stars with and without spin

Fractional statistical uncertainties in chirp mass (top), mass ratio (middle) and total mass (bottom) estimates as a function of network signal-to-noise ratio for both the fully spinning analysis and the quicker non-spinning analysis. The lines indicate approximate power-law trends to guide the eye. Figure 2 of Farr et al. (2016).

We need to allow for spins when measuring binary neutron star masses in order to explore for the possible range of masses.

Sky localization and distance, however, are not affected by the spins here. This might not be the case for sources which are more rapidly spinning, but assuming that binary neutron stars do have low spin, we are safe using the easier-to-calculate results. This is good news for astronomers who need to know promptly where to look for explosions.

arXiv: 1508.05336 [astro-ph.HE]
Journal: Astrophysical Journal825(2):116(10); 2016
Authorea [bonus note]: Parameter estimation on gravitational waves from neutron-star binaries with spinning components
Conference proceedings:
 Early Advanced LIGO binary neutron-star sky localization and parameter estimation
Favourite albatross:
 Wilbur

Bonus notes

How long?

The plot below shows how long it took to analyse each of the binary neutron star signals.

Run time for different analyses of binary neutron stars

Distribution of run times for binary neutron star signals. Low-latency sky localization is done with BAYESTAR; medium-latency non-spinning parameter estimation is done with LALInference and TaylorF2 waveforms, and high-latency fully spinning parameter estimation is done with LALInference and SpinTaylorT4 waveforms. The LALInference results are for 2000 posterior samples. Figure 9 from Farr et al. (2016).

BAYESTAR provides a rapid sky localization, taking less than ten seconds. This is handy for astronomers who want to catch a flash caused by the merger before it fades.

Estimates for the other parameters are computed with LALInference. How long this takes to run depends on which waveform you are using and how many samples from the posterior probability distribution you want (the more you have, the better you can map out the shape of the distribution). Here we show times for 2000 samples, which is enough to get a rough idea (we collected ten times more for GW150914 and friends). Collecting twice as many samples takes (roughly) twice as long. Prompt results can be obtained with a waveform that doesn’t include spin (TaylorF2), these take about a day at most.

For this work, we considered results using a waveform which included the full effects of spin (SpinTaylorT4). These take about twenty times longer than the non-spinning analyses. The maximum time was 172 days. I have a strong suspicion that the computing time cost more than my salary.

Gravitational-wave arts and crafts

Waiting for LALInference runs to finish gives you some time to practise hobbies. This is a globe knitted by Hannah. The two LIGO sites marked in red, and a typical gravitational-wave sky localization stitched on.

In order to get these results, we had to add check-pointing to our code, so we could stop it and restart it; we encountered a new type of error in the software which manages jobs running on our clusters, and Hannah Middleton and I got several angry emails from cluster admins (who are wonderful people) for having too many jobs running.

In comparison, analysing GW150914, LVT151012 and GW151226 was a breeze. Grudgingly, I have to admit that getting everything sorted out for this study made us reasonably well prepared for the real thing. Although, I’m not looking forward to that first binary neutron star signal…

Authorea

Authorea is an online collaborative writing service. It allows people to work together on documents, editing text, adding comments, and chatting with each other. By the time we came to write up the paper, Ben was no longer in Birmingham, and many of our coauthors are scattered across the globe. Ben thought Authorea might be useful for putting together the paper.

Writing was easy, and the ability to add comments on the text was handy for getting feedback from coauthors. The chat was going for quickly sorting out issues like plots. Overall, I was quite pleased, up to the point we wanted to get the final document. Extracted a nicely formatted PDF was awkward. For this I switched to using the Github back-end. On reflection, a simple git repo, plus a couple of Skype calls might have been a smoother way of writing, at least for a standard journal article.

Authorea promises to be an open way of producing documents, and allows for others to comment on papers. I don’t know if anyone’s looked at our Authorea article. For astrophysics, most people use the arXiv, which is free to everyone, and I’m not sure if there’s enough appetite for interaction (beyond the occasional email to authors) to motivate people to look elsewhere. At least, not yet.

In conclusion, I think Authorea is a nice idea, and I would try out similar collaborative online writing tools again, but I don’t think I can give it a strong recommendation for your next paper unless you have a particular idea in mind of how to make the most of it.

Testing general relativity using golden black-hole binaries

Binary black hole mergers are the ultimate laboratory for testing gravity. The gravitational fields are strong, and things are moving at close to the speed of light. these extreme conditions are exactly where we expect our theories could breakdown, which is why we were so exciting by detecting gravitational waves from black hole coalescences. To accompany the first detection of gravitational waves, we performed several tests of Einstein’s theory of general relativity (it passed). This paper outlines the details of one of the tests, one that can be extended to include future detections to put Einstein’s theory to the toughest scrutiny.

One of the difficulties of testing general relativity is what do you compare it to? There are many alternative theories of gravity, but only a few of these have been studied thoroughly enough to give an concrete idea of what a binary black hole merger should look like. Even if general relativity comes out on top when compared to one alternative model, it doesn’t mean that another (perhaps one we’ve not thought of yet) can be ruled out. We need ways of looking for something odd, something which hints that general relativity is wrong, but doesn’t rely on any particular alternative theory of gravity.

The test suggested here is a consistency test. We split the gravitational-wave signal into two pieces,a low frequency part and a high frequency part, and then try to measure the properties of the source from the two parts. If general relativity is correct, we should get answers that agree; if it’s not, and there’s some deviation in the exact shape of the signal at different frequencies, we can get different answers. One way of thinking about this test is imagining that we have two experiments, one where we measure lower frequency gravitational waves and one where we measure higher frequencies, and we are checking to see if their results agree.

To split the waveform, we use a frequency around that of the last stable circular orbit: about the point that the black holes stop orbiting about each other and plunge together and merge [bonus note]. For GW150914, we used 132 Hz, which is about the same as the C an octave below middle C (a little before time zero in the simulation below). This cut roughly splits the waveform into the low frequency inspiral (where the two black hole are orbiting each other), and the higher frequency merger (where the two black holes become one) and ringdown (where the final black hole settles down).

We are fairly confident that we understand what goes on during the inspiral. This is similar physics to where we’ve been testing gravity before, for example by studying the orbits of the planets in the Solar System. The merger and ringdown are more uncertain, as we’ve never before probed these strong and rapidly changing gravitational fields. It therefore seems like a good idea to check the two independently [bonus note].

We use our parameter estimation codes on the two pieces to infer the properties of the source, and we compare the values for the mass M_f and spin \chi_f of the final black hole. We could use other sets of parameters, but this pair compactly sum up the properties of the final black hole and are easy to explain. We look at the difference between the estimated values for the mass and spin, \Delta M_f and \Delta \chi_f, if general relativity is a good match to the observations, then we expect everything to match up, and \Delta M_f and \Delta \chi_f to be consistent with zero. They won’t be exactly zero because we have noise in the detector, but hopefully zero will be within the uncertainty region [bonus note]. An illustration of the test is shown below, including one of the tests we did to show that it does spot when general relativity is not correct.

Consistency test resuls

Results from the consistency test. The top panels show the outlines of the 50% and 90% credible levels for the low frequency (inspiral) part of the waveform, the high frequency (merger–ringdown) part, and the entire (inspiral–merger–ringdown, IMR) waveform. The bottom panel shows the fractional difference between the high and low frequency results. If general relativity is correct, we expect the distribution to be consistent with (0,0), indicated by the cross (+). The left panels show a general relativity simulation, and the right panel shows a waveform from a modified theory of gravity. Figure 1 of Ghosh et al. (2016).

A convenient feature of using \Delta M_f and \Delta \chi_f to test agreement with relativity, is that you can combine results from multiple observations. By averaging over lots of signals, you can reduce the uncertainty from noise. This allows you to pin down whether or not things really are consistent, and spot smaller deviations (we could get precision of a few percent after about 100 suitable detections). I look forward to seeing how this test performs in the future!

arXiv: 1602.02453 [gr-qc]
Journal: Physical Review D; 94(2):021101(6); 2016
Favourite golden thing: Golden syrup sponge pudding

Bonus notes

Review

I became involved in this work as a reviewer. The LIGO Scientific Collaboration is a bit of a stickler when it comes to checking its science. We had to check that the test was coded up correctly, that the results made sense, and that calculations done and written up for GW150914 were all correct. Since most of the team are based in India [bonus note], this involved some early morning telecons, but it all went smoothly.

One of our checks was that the test wasn’t sensitive to exact frequency used to split the signal. If you change the frequency cut, the results from the two sections do change. If you lower the frequency, then there’s less of the low frequency signal and the measurement uncertainties from this piece get bigger. Conversely, there’ll be more signal in the high frequency part and so we’ll make a more precise measurement of the parameters from this piece. However, the overall results where you combine the two pieces stay about the same. You get best results when there’s a roughly equal balance between the two pieces, but you don’t have to worry about getting the cut exactly on the innermost stable orbit.

Golden binaries

In order for the test to work, we need the two pieces of the waveform to both be loud enough to allow us to measure parameters using them. This type of signals are referred to as golden. Earlier work on tests of general relativity using golden binaries has been done by Hughes & Menou (2015), and Nakano, Tanaka & Nakamura (2015). GW150914 was a golden binary, but GW151226 and LVT151012 were not, which is why we didn’t repeat this test for them.

GW150914 results

For The Event, we ran this test, and the results are consistent with general relativity being correct. The plots below show the estimates for the final mass and spin (here denoted a_f rather than \chi_f), and the fractional difference between the two measurements. The points (0,0) is at the 28% credible level. This means that if general relativity is correct, we’d expect a deviation at this level to occur around-about 72% of the time due to noise fluctuations. It wouldn’t take a particular rare realisation of noise to cause the assume true value of (0,0) to be found at this probability level, so we’re not too suspicious that something is amiss with general relativity.

GW150914 consistency test results

Results from the consistency test for The Event. The top panels final mass and spin measurements from the low frequency (inspiral) part of the waveform, the high frequency (post-inspiral) part, and the entire (IMR) waveform. The bottom panel shows the fractional difference between the high and low frequency results. If general relativity is correct, we expect the distribution to be consistent with (0,0), indicated by the cross. Figure 3 of the Testing General Relativity Paper.

The authors

Abhirup Ghosh and Archisman Ghosh were two of the leads of this study. They are both A. Ghosh at the same institution, which caused some confusion when compiling the LIGO Scientific Collaboration author list. I think at one point one of them (they can argue which) was removed as someone thought there was a mistaken duplication. To avoid confusion, they now have their full names used. This is a rare distinction on the Discovery Paper (I’ve spotted just two others). The academic tradition of using first initials plus second name is poorly adapted to names which don’t fit the typical western template, so we should be more flexible.

Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013

Gravitational waves give us a new way of observing the Universe. This raises the possibility of multimessenger astronomy, where we study the same system using different methods: gravitational waves, light or neutrinos. Each messenger carries different information, so by using them together we can build up a more complete picture of what’s going on. This paper looks for gravitational waves that coincide with radio bursts. None are found, but we now have a template for how to search in the future.

On a dark night, there are two things which almost everyone will have done: wondered at the beauty of the starry sky and wondered exactly what was it that just went bump… Astronomers do both. Transient astronomy is about figuring out what are the things which go bang in the night—not the things which make suspicious noises, but objects which appear (and usually disappear) suddenly in the sky.

Most processes in astrophysics take a looooong time (our Sun is four-and-a-half billion years old and is just approaching middle age). Therefore, when something happens suddenly, flaring perhaps over just a few seconds, you know that something drastic must be happening! We think that most transients must be tied up with a violent event such as an explosion. However, because transients are so short, it can difficult to figure out exactly where they come from (both because they might have faded by the time you look, and because there’s little information to learn from a blip in the first place).

Radio transients are bursts of radio emission of uncertain origin. We’ve managed to figure out that some come from microwave ovens, but the rest do seem to come from space. This paper looks at two types: rotating radio transients (RRATs) and fast radio bursts (FRBs). RRATs look like the signals from pulsars, except that they don’t have the characteristic period pattern of pulsars. It may be that RRATs come from dying pulsars, flickering before they finally switch off, or it may be that they come from neutron stars which are not normally pulsars, but have been excited by a fracturing of their crust (a starquake). FRBs last a few milliseconds, they could be generated when two neutron stars merge and collapse to form a black hole, or perhaps from a highly-magnetised neutron star. Normally, when astronomers start talking about magnetic fields, it means that we really don’t know what’s going on [bonus note]. That is the case here. We don’t know what causes radio transients, but we are excited to try figuring it out.

This paper searches old LIGO, Virgo and GEO data for any gravitational-wave signals that coincide with observed radio transients. We use a catalogue of RRATs and FRBs from the Green Bank Telescope and the Parkes Observatory, and search around these times. We use a burst search, which doesn’t restrict itself to any particular form of gravitational-wave; however, the search was tuned for damped sinusoids and sine–Gaussians (generic wibbles), cosmic strings (which may give an indication of how uncertain we are of where radio transients could come from), and coalescences of binary neutron stars or neutron star–black hole binaries. Hopefully the search covers all plausible options. Discovering a gravitational wave coincident with a radio transient would give us much welcomed information about the source, and perhaps pin down their origin.

Results from search for gravitational waves conicident with radio transients

Search results for gravitational waves coincident with radio transients. The probabilities for each time containing just noise (blue) match the expected background distribution (dashed). This is consistent with a non-detection.

The search discovered nothing. Results match what we would expect from just noise in the detectors. This is not too surprising since we are using data from the first-generation detectors. We’ll be repeating the analysis with the upgraded detectors, which can find signals from larger distances. If we are lucky, multimessenger astronomy will allow us to figure out exactly what needs to go bump to create a radio transient.

arXiv: 1605.01707 [astro-ph.HE]
Journal: Physical Review D; 93(12):122008(14); 2016
Science summary: Searching for gravitational wave bursts in coincidence with short duration radio bursts
Favourite thing that goes bump in the night: Heffalumps and Woozles [probably not the cause of radio transients]

Bonus note

Magnetism and astrophysics

Magnetic fields complicate calculations. They make things more difficult to model and are therefore often left out. However, we know that magnetic fields are everywhere and that they do play important roles in many situations. Therefore, they are often invoked as an explanation of why models can’t explain what’s going on. I learnt early in my PhD that you could ask “What about magnetic fields?” at the end of almost any astrophysics seminar (it might not work for some observational talks, but then you could usually ask “What about dust?” instead). Handy if ever you fall asleep…