GW170817—The papers

After three months (and one binary black hole detection announcement), I finally have time to write about the suite of LIGO–Virgo papers put together to accompany GW170817.

The papers

There are currently 9 papers in the GW170817 family. Further papers, for example looking at parameter estimation in detail, are in progress. Papers are listed below in order of arXiv posting. My favourite is the GW170817 Discovery Paper. Many of the highlights, especially from the Discovery and Multimessenger Astronomy Papers, are described in my GW170817 announcement post.

Keeping up with all the accompanying observational results is a task not even Sisyphus would envy. I’m sure that the details of these will be debated for a long time to come. I’ve included references to a few below (mostly as [citation notes]), but these are not guaranteed to be complete (I’ll continue to expand these in the future).

0. The GW170817 Discovery Paper

Title: GW170817: Observation of gravitational waves from a binary neutron star inspiral
arXiv:
 1710.05832 [gr-qc]
Journal:
 Physical Review Letters; 119(16):161101(18); 2017
LIGO science summary:
 GW170817: Observation of gravitational waves from a binary neutron star inspiral

This is the paper announcing the gravitational-wave detection. It gives an overview of the properties of the signal, initial estimates of the parameters of the source (see the GW170817 Properties Paper for updates) and the binary neutron star merger rate, as well as an overview of results from the other companion papers.

I was disappointed that “the era of gravitational-wave multi-messenger astronomy has opened with a bang” didn’t make the conclusion of the final draft.

More details: The GW170817 Discovery Paper summary

−1. The Multimessenger Astronomy Paper

Title: Multi-messenger observations of a binary neutron star merger
arXiv:
 1710.05833 [astro-ph.HE]
Journal:
 Astrophysical Journal Letters; 848(2):L12(59); 2017
LIGO science summary:
 The dawn of multi-messenger astrophysics: observations of a binary neutron star merger

I’ve numbered this paper as −1 as it gives an overview of all the observations—gravitational wave, electromagnetic and neutrino—accompanying GW170817. I feel a little sorry for the neutrino observers, as they’re the only ones not to make a detection. Drawing together the gravitational wave and electromagnetic observations, we can confirm that binary neutron star mergers are the progenitors of (at least some) short gamma-ray bursts and kilonovae.

Do not print this paper, the author list stretches across 23 pages.

More details: The Multimessenger Astronomy Paper summary

1. The GW170817 Gamma-ray Burst Paper

Title: Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A
arXiv:
 1710.05834 [astro-ph.HE]
Journal:
 Astrophysical Journal Letters; 848(2):L13(27); 2017
LIGO science summary:
 Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A

Here we bring together the LIGO–Virgo observations of GW170817 and the Fermi and INTEGRAL observations of GRB 170817A. From the spatial and temporal coincidence of the gravitational waves and gamma rays, we establish that the two are associated with each other. There is a 1.7 s time delay between the merger time estimated from gravitational waves and the arrival of the gamma-rays. From this, we make some inferences about the structure of the jet which is the source of the gamma rays. We can also use this to constrain deviations from general relativity, which is cool. Finally, we estimate that there be 0.3–1.7 joint gamma ray–gravitational wave detections per year once our gravitational-wave detectors reach design sensitivity!

More details: The GW170817 Gamma-ray Burst Paper summary

2. The GW170817 Hubble Constant Paper

Title: A gravitational-wave standard siren measurement of the Hubble constant [bonus note]
arXiv:
 1710.05835 [astro-ph.CO]
Journal:
 Nature; 551(7678):85–88; 2017 [bonus note]
LIGO science summary:
 Measuring the expansion of the Universe with gravitational waves

The Hubble constant quantifies the current rate of expansion of the Universe. If you know how far away an object is, and how fast it is moving away (due to the expansion of the Universe, not because it’s on a bus or something, that is important), you can estimate the Hubble constant. Gravitational waves give us an estimate of the distance to the source of GW170817. The observations of the optical transient AT 2017gfo allow us to identify the galaxy NGC 4993 as the host of GW170817’s source. We know the redshift of the galaxy (which indicates how fast its moving). Therefore, putting the two together we can infer the Hubble constant in a completely new way.

More details: The GW170817 Hubble Constant Paper summary

3. The GW170817 Kilonova Paper

Title: Estimating the contribution of dynamical ejecta in the kilonova associated with GW170817
arXiv:
 1710.05836 [astro-ph.HE]
Journal:
 Astrophysical Journal Letters; 850(2):L39(13); 2017
LIGO science summary:
 Predicting the aftermath of the neutron star collision that produced GW170817

During the coalescence of two neutron stars, lots of neutron-rich matter gets ejected. This undergoes rapid radioactive decay, which powers a kilonova, an optical transient. The observed signal depends upon the material ejected. Here, we try to use our gravitational-wave measurements to predict the properties of the ejecta ahead of the flurry of observational papers.

More details: The GW170817 Kilonova Paper summary

4. The GW170817 Stochastic Paper

Title: GW170817: Implications for the stochastic gravitational-wave background from compact binary coalescences
arXiv:
 1710.05837 [gr-qc]
Journal: Physical Review Letters; 120(9):091101(12); 2018
LIGO science summary: The background symphony of gravitational waves from neutron star and black hole mergers

We can detect signals if they are loud enough, but there will be many quieter ones that we cannot pick out from the noise. These add together to form an overlapping background of signals, a background rumbling in our detectors. We use the inferred rate of binary neutron star mergers to estimate their background. This is smaller than the background from binary black hole mergers (black holes are more massive, so they’re intrinsically louder), but they all add up. It’ll still be a few years before we could detect a background signal.

More details: The GW170817 Stochastic Paper summary

5. The GW170817 Progenitor Paper

Title: On the progenitor of binary neutron star merger GW170817
arXiv:
 1710.05838 [astro-ph.HE]
Journal:
 Astrophysical Journal Letters; 850(2):L40(18); 2017
LIGO science summary:
 Making GW170817: neutron stars, supernovae and trick shots (I’d especially recommend reading this one)

We know that GW170817 came from the coalescence of two neutron stars, but where did these neutron stars come from? Here, we combine the parameters inferred from our gravitational-wave measurements, the observed position of AT 2017gfo in NGC 4993 and models for the host galaxy, to estimate properties like the kick imparted to neutron stars during the supernova explosion and how long it took the binary to merge.

More details: The GW170817 Progenitor Paper summary

6. The GW170817 Neutrino Paper

Title: Search for high-energy neutrinos from binary neutron star merger GW170817 with ANTARES, IceCube, and the Pierre Auger Observatory
arXiv:
 1710.05839 [astro-ph.HE]
Journal:
 Astrophysical Journal Letters; 850(2):L35(18); 2017

This is the search for neutrinos from the source of GW170817. Lots of neutrinos are emitted during the collision, but not enough to be detectable on Earth. Indeed, we don’t find any neutrinos, but we combine results from three experiments to set upper limits.

More details: The GW170817 Neutrino Paper summary

7. The GW170817 Post-merger Paper

Title: Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817
arXiv:
 1710.09320 [astro-ph.HE]
Journal:
 Astrophysical Journal Letters; 851(1):L16(13); 2017
LIGO science summary:
 Searching for the neutron star or black hole resulting from GW170817

After the two neutron stars merged, what was left? A larger neutron star or a black hole? Potentially we could detect gravitational waves from a wibbling neutron star, as it sloshes around following the collision. We don’t. It would have to be a lot closer for this to be plausible. However, this paper outlines how to search for such signals; the GW170817 Properties Paper contains a more detailed look at any potential post-merger signal.

More details: The GW170817 Post-merger Paper summary

8. The GW170817 Properties Paper

Title: Properties of the binary neutron star merger GW170817
arXiv:
 1805.11579 [gr-qc]

In the GW170817 Discovery Paper we presented initial estimates for the properties of GW170817’s source. These were the best we could do on the tight deadline for the announcement (it was a pretty good job in my opinion). Now we have had a bit more time we can present a new, improved analysis. This uses recalibrated data and a wider selection of waveform models. We also fold in our knowledge of the source location, thanks to the observation of AT 2017gfo by our astronomer partners, for our best results. if you want to know the details of GW170817’s source, this is the paper for you!

More details: The GW170817 Properties Paper summary

9. The GW170817 Equation-of-state Paper

Title: GW170817: Measurements of neutron star radii and equation of state
arXiv:
 1805.11581 [gr-qc]

Neutron stars are made of weird stuff: nuclear density material which we cannot replicate here on Earth. Neutron star matter is often described in terms of an equation of state, a relationship that explains how the material changes at different pressures or densities. A stiffer equation of state means that the material is harder to squash, and a softer equation of state is easier to squish. This means that for a given mass, a stiffer equation of state will predict a larger, fluffier neutron star, while a softer equation of state will predict a more compact, denser neutron star. In this paper, we assume that GW170817’s source is a binary neutron star system, where both neutron stars have the same equation of state, and see what we can infer about neutron star stuff™.

More details: The GW170817 Equation-of-state Paper summary

The GW170817 Discovery Paper

Synopsis: GW170817 Discovery Paper
Read this if: You want all the details of our first gravitational-wave observation of a binary neutron star coalescence
Favourite part: Look how well we measure the chirp mass!

GW170817 was a remarkable gravitational-wave discovery. It is the loudest signal observed to date, and the source with the lowest mass components. I’ve written about some of the highlights of the discovery in my previous GW170817 discovery post.

Binary neutron stars are one of the principal targets for LIGO and Virgo. The first observational evidence for the existence of gravitational waves came from observations of binary pulsars—a binary neutron star system where (at least one) one of the components is a pulsar. Therefore (unlike binary black holes), we knew that these sources existed before we turned on our detectors. What was less certain was how often they merge. In our first advanced-detector observing run (O1), we didn’t find any, allowing us to estimate an upper limit on the merger rate of 12600~\mathrm{Gpc^{-1}\,yr^{-1}}. Now, we know much more about merging binary neutron stars.

GW170817, as a loud and long signal, is a highly significant detection. You can see it in the data by eye. Therefore, it should have been a easy detection. As is often the case with real experiments, it wasn’t quite that simple. Data transfer from Virgo had stopped over night, and there was a glitch (a non-stationary and non-Gaussian noise feature) in the Livingston detector, which meant that this data weren’t automatically analysed. Nevertheless, GstLAL flagged something interesting in the Hanford data, and there was a mad flurry to get the other data in place so that we could analyse the signal in all three detectors. I remember being sceptical in these first few minutes until I saw the plot of Livingston data which blew me away: the chirp was clearly visible despite the glitch!

Normalised spectrograms for GW170817

Time–frequency plots for GW170104 as measured by Hanford, Livingston and Virgo. The Livinston data have had the glitch removed. The signal is clearly visible in the two LIGO detectors as the upward sweeping chirp; it is not visible in Virgo because of its lower sensitivity and the source’s position in the sky. Figure 1 of the GW170817 Discovery Paper.

Using data from both of our LIGO detectors (as discussed for GW170814, our offline algorithms searching for coalescing binaries only use these two detectors during O2), GW170817 is an absolutely gold-plated detection. GstLAL estimates a false alarm rate (the rate at which you’d expect something at least this signal-like to appear in the detectors due to a random noise fluctuation) of less than one in 1,100,000 years, while PyCBC estimates the false alarm rate to be less than one in 80,000 years.

Parameter estimation (inferring the source properties) used data from all three detectors. We present a (remarkably thorough given the available time) initial analysis in this paper (updated results are given in the GW170817 Properties Paper). This signal is challenging to analyse because of the glitch and because binary neutron stars are made of stuff™, which can leave an imprint on the waveform. We’ll be looking at the effects of these complications in more detail in the future. Our initial results are

  • The source is localized to a region of about 28~\mathrm{deg^2} at a distance of 40^{+8}_{-14}~\mathrm{Mpc} (we typically quote results at the 90% credible level). This is the closest gravitational-wave source yet.
  • The chirp mass is measured to be 1.188_{-0.002}^{+0.004} M_\odot, much lower than for our binary black hole detections.
  • The spins are not well constrained, the uncertainty from this means that we don’t get precise measurements of the individual component masses. We quote results with two choices of spin prior: the astrophysically motivated limit of 0.05, and the more agnostic and conservative upper bound of 0.89. I’ll stick to using the low-spin prior results be default.
  • Using the low-spin prior, the component masses are m_1 = 1.361.60 M_\odot and m_2 = 1.171.36 M_\odot. We have the convention that m_1 \geq m_2, which is why the masses look unequal; there’s a lot of support for them being nearly equal. These masses match what you’d expect for neutron stars.

As mentioned above, neutron stars are made of stuff™, and the properties of this leave an imprint on the waveform. If neutron stars are big and fluffy, they will get tidally distorted. Raising tides sucks energy and angular momentum out of the orbit, making the inspiral quicker. If neutron stars are small and dense, tides are smaller and the inspiral looks like that for tow black holes. For this initial analysis, we used waveforms which includes some tidal effects, so we get some preliminary information on the tides. We cannot exclude zero tidal deformation, meaning we cannot rule out from gravitational waves alone that the source contains at least one black hole (although this would be surprising, given the masses). However, we can place a weak upper limit on the combined dimensionless tidal deformability of \tilde{\Lambda} \leq 900. This isn’t too informative, in terms of working out what neutron stars are made from, but we’ll come back to this in the GW170817 Properties Paper and the GW170817 Equation-of-state Paper.

Given the source masses, and all the electromagnetic observations, we’re pretty sure this is a binary neutron star system—there’s nothing to suggest otherwise.

Having observed one (and one one) binary neutron star coalescence in O1 and O2, we can now put better constraints on the merger rate. As a first estimate, we assume that component masses are uniformly distributed between 1 M_\odot and 2 M_\odot, and that spins are below 0.4 (in between the limits used for parameter estimation). Given this, we infer that the merger rate is 1540_{-1220}^{+3200}~\mathrm{Gpc^{-3}\,yr^{-1}}, safely within our previous upper limit [citation note].

There’s a lot more we can learn from GW170817, especially as we don’t just have gravitational waves as a source of information, and this is explained in the companion papers.

The Multimessenger Paper

Synopsis: Multimessenger Paper
Read this if: Don’t. Use it too look up which other papers to read.
Favourite part: The figures! It was a truly amazing observational effort to follow-up GW170817

The remarkable thing about this paper is that it exists. Bringing together such a diverse (and competitive) group was a huge effort. Alberto Vecchio was one of the editors, and each evening when leaving the office, he was convinced that the paper would have fallen apart by morning. However, it hung together—the story was too compelling. This paper explains how gravitational waves, short gamma-ray bursts, kilonovae all come from a single source [citation note]. This is the greatest collaborative effort in the history of astronomy.

The paper outlines the discoveries and all of the initial set of observations. If you want to understand the observations themselves, this is not the paper to read. However, using it, you can track down the papers that you do want. A huge amount of care went in to trying to describe how discoveries were made: for example, Fermi observed GRB 170817A independently of the gravitational-wave alert, and we found GW170817 without relying on the GRB alert, however, the communication between teams meant that we took everything much seriously and pushed out alerts as quickly as possible. For more on the history of observations, I’d suggest scrolling through the GCN archive.

The paper starts with an overview of the gravitational-wave observations from the inspiral, then the prompt detection of GRB 170817A, before describing how the gravitational-wave localization enabled discovery of the optical transient AT 2017gfo. This source, in nearby galaxy NGC 4993, was then the subject of follow-up across the electromagnetic spectrum. We have huge amount of photometric and spectroscopy of the source, showing general agreement with models for a kilonova. X-ray and radio afterglows were observed 9 days and 16 days after the merger, respectively [citation note]. No neutrinos were found, which isn’t surprising.

The GW170817 Gamma-ray Burst Paper

Synopsis: GW170817 Gamma-ray Burst Paper
Read this if: You’re interested in the jets from where short gamma-ray bursts originate or in tests of general relativity
Favourite part: How much science come come from a simple time delay measurement

This joint LIGO–Virgo–FermiINTEGRAL paper combines our observations of GW170817 and GRB 170817A. The result is one of the most contentful of the companion papers.

Gravitational-wave chirp and short gamma-ray burst

Detection of GW170817 and GRB 170817A. The top three panels show the gamma-ray lightcurves (first: GBM detectors 1, 2, and 5 for 10–50 keV; second: GBM data for 50–300 keV ; third: the SPI-ACS data starting approximately at 100 keV and with a high energy limit of least 80 MeV), the red line indicates the background.The bottom shows the a time–frequency representation of coherently combined gravitational-wave data from LIGO-Hanford and LIGOLivingston. Figure 2 of the GW170817 Gamma-ray Burst Paper.

The first item on the to-do list for joint gravitational-wave–gamma-ray science, is to establish that we are really looking at the same source.

From the GW170817 Discovery Paper, we know that its source is consistent with being a binary neutron star system. Hence, there is matter around which can launch create the gamma-rays. The Fermi-GBM and INTEGRAL observations of GRB170817A indicate that it falls into the short class, as hypothesised as the result of a binary neutron star coalescence. Therefore, it looks like we could have the right ingredients.

Now, given that it is possible that the gravitational waves and gamma rays have the same source, we can calculate the probability of the two occurring by chance. The probability of temporal coincidence is 5.0 \times 10^{-6}, adding in spatial coincidence too, and the probability becomes 5.0 \times 10^{-8}. It’s safe to conclude that the two are associated: merging binary neutron stars are the source of at least some short gamma-ray bursts!

Testing gravity

There is a \sim1.74\pm0.05~\mathrm{s} delay time between the inferred merger time and the gamma-ray burst. Given that signal has travelled for about 85 million years (taking the 5% lower limit on the inferred distance), this is a really small difference: gravity and light must travel at almost exactly the same speed. To derive exact limit you need to make some assumptions about when the gamma-rays were created. We’d expect some delay as it takes time for the jet to be created, and then for the gamma-rays to blast their way out of the surrounding material. We conservatively (and arbitrarily) take a window of the delay being 0 to 10 seconds, this gives

\displaystyle -3 \times 10^{-15} \leq \frac{v_\mathrm{GW} - v_\mathrm{EM}}{v_\mathrm{EM}} \leq 7 \times 10^{-16}.

That’s pretty small!

General relativity predicts that gravity and light should travel at the same speed, so I wasn’t too surprised by this result. I was surprised, however, that this result seems to have caused a flurry of activity in effectively ruling out several modified theories of gravity. I guess there’s not much point in explaining what these are now, but they are mostly theories which add in extra fields, which allow you to tweak how gravity works so you can explain some of the effects attributed to dark energy or dark matter. I’d recommend Figure 2 of Ezquiaga & Zumalacárregui (2017) for a summary of which theories pass the test and which are in trouble.

Viable and non-viable scalar–tensor theories

Table showing viable (left) and non-viable (right) scalar–tensor theories after discovery of GW170817/GRB 170817A. The theories are grouped as Horndeski theories and (the more general) beyond Horndeski theories. General relativity is a tensor theory, so these models add in an extra scalar component. Figure 2 of Ezquiaga & Zumalacárregui (2017).

We don’t discuss the theoretical implications of the relative speeds of gravity and light in this paper, but we do use the time delay to place bounds for particular on potential deviations from general relativity.

  1. We look at a particular type of Lorentz invariance violation. This is similar to what we did for GW170104, where we looked at the dispersion of gravitational waves, but here it is for the case of \alpha = 2, which we couldn’t test.
  2. We look at the Shapiro delay, which is the time difference travelling in a curved spacetime relative to a flat one. That light and gravity are effected the same way is a test of the weak equivalence principle—that everything falls the same way. The effects of the curvature can be quantified with the parameter \gamma, which describes the amount of curvature per unit mass. In general relativity \gamma_\mathrm{GW} = \gamma_\mathrm{EM} = 1. Considering the gravitational potential of the Milky Way, we find that -2.6 \times 10^{-7} \leq \gamma_\mathrm{GW} - \gamma_\mathrm{EM} \leq 1.2 \times 10 ^{-6} [citation note].

As you’d expect given the small time delay, these bounds are pretty tight! If you’re working on a modified theory of gravity, you have some extra checks to do now.

Gamma-ray bursts and jets

From our gravitational-wave and gamma-ray observations, we can also make some deductions about the engine which created the burst. The complication here, is that we’re not exactly sure what generates the gamma rays, and so deductions are model dependent. Section 5 of the paper uses the time delay between the merger and the burst, together with how quickly the burst rises and fades, to place constraints on the size of the emitting region in different models. The papers goes through the derivation in a step-by-step way, so I’ll not summarise that here: if you’re interested, check it out.

Energy and luminosity distribution of gamma-ray bursts

Isotropic energies (left) and luminosities (right) for all gamma-ray bursts with measured distances. These isotropic quantities assume equal emission in all directions, which gives an upper bound on the true value if we are observing on-axis. The short and long gamma-ray bursts are separated by the standard T_{90} = 2~\mathrm{s} duration. The green line shows an approximate detection threshold for Fermi-GBM. Figure 4 from the GW170817 Gamma-ray Burst Paper; you may have noticed that the first version of this paper contained two copies of the energy plot by mistake.

GRB 170817A was unusually dim [citation note]. The plot above compares it to other gamma-ray bursts. It is definitely in the tail. Since it appears so dim, we think that we are not looking at a standard gamma-ray burst. The most obvious explanation is that we are not looking directly down the jet: we don’t expect to see many off-axis bursts, since they are dimmer. We expect that a gamma-ray burst would originate from a jet of material launched along the direction of the total angular momentum. From the gravitational waves alone, we can estimate that the misalignment angle between the orbital angular momentum axis and the line of sight is \leq 55~\mathrm{deg} (adding in the identification of the host galaxy, this becomes \leq 28~\mathrm{deg} using the Planck value for the Hubble constant and 36~\mathrm{deg} with the SH0ES value), so this is consistent with viewing the burst off-axis (updated numbers are given in the GW170817 Properties Paper). There are multiple models for such gamma-ray emission, as illustrated below. We could have a uniform top-hat jet (the simplest model) which we are viewing from slightly to the side, we could have a structured jet, which is concentrated on-axis but we are seeing from off-axis, or we could have a cocoon of material pushed out of the way by the main jet, which we are viewing emission from. Other electromagnetic observations will tell us more about the inclination and the structure of the jet [citation note].

GRB 170817A jet structure and viewing angle

Cartoon showing three possible viewing geometries and jet profiles which could explain the observed properties of GRB 170817A. Figure 5 of the GW170817 Gamma-ray Burst Paper.

Now that we know gamma-ray bursts can be this dim, if we observe faint bursts (with unknown distances), we have to consider the possibility that they are dim-and-close in addition to the usual bright-and-far-away.

The paper closes by considering how many more joint gravitational-wave–gamma-ray detections of binary neutron star coalescences we should expect in the future. In our next observing run, we could expect 0.1–1.4 joint detections per year, and when LIGO and Virgo get to design sensitivity, this could be 0.3–1.7 detections per year.

The GW170817 Hubble Constant Paper

Synopsis: GW170817 Hubble Constant Paper
Read this if: You have an interest in cosmology
Favourite part: In the future, we may be able to settle the argument between the cosmic microwave background and supernova measurements

The Universe is expanding. In the nearby Universe, this can be described using the Hubble relation

v_H = H_0 D,

where v_H is the expansion velocity, H_0 is the Hubble constant and D is the distance to the source. GW170817 is sufficiently nearby for this relationship to hold. We know the distance from the gravitational-wave measurement, and we can estimate the velocity from the redshift of the host galaxy. Therefore, it should be simple to combine the two to find the Hubble constant. Of course, there are a few complications…

This work is built upon the identification of the optical counterpart AT 2017gfo. This allows us to identify the galaxy NGC 4993 as the host of GW170817’s source: we calculate that there’s a 4 \times 10^{-5} probability that AT 2017gfo would be as close to NGC 4993 on the sky by chance. Without a counterpart, it would still be possible to infer the Hubble constant statistically by cross-referencing the inferred gravitational-wave source location with the ensemble of compatible galaxies in a catalogue (you assign a probability to the source being associated with each galaxy, instead of saying it’s definitely in this one). The identification of NGC 4993 makes things much simpler.

As a first ingredient, we need the distance from gravitational waves. For this, a slightly different analysis was done than in the GW170817 Discovery Paper. We fix the sky location of the source to match that of AT 2017gfo, and we use (binary black hole) waveforms which don’t include any tidal effects. The sky position needs to be fixed, because for this analysis we are assuming that we definitely know where the source is. The tidal effects were not included (but precessing spins were) because we needed results quickly: the details of spins and tides shouldn’t make much difference to the distance. From this analysis, we find the distance is 41^{+6}_{-13}~\mathrm{Mpc} if we follow our usual convention of quoting the median at symmetric 90% credible interval; however, this paper primarily quotes the most probable value and minimal (not-necessarily symmmetric) 68.3% credible interval, following this convention, we write the distance as 44^{+3}_{-7}~\mathrm{Mpc}.

While NGC 4993 being close by makes the relationship for calculating the Hubble constant simple, it adds a complication for calculating the velocity. The motion of the galaxy is not only due to the expansion of the Universe, but because of how it is moving within the gravitational potentials of nearby groups and clusters. This is referred to as peculiar motion. Adding this in increases our uncertainty on the velocity. Combining results from the literature, our final estimate for the velocity is v_H= 3017 \pm 166~\mathrm{km\,s^{-1}}.

We put together the velocity and the distance in a Bayesian analysis. This is a little more complicated than simply dividing the numbers (although that gives you a similar result). You have to be careful about writing things down, otherwise you might implicitly assume a prior that you didn’t intend (my most useful contribution to this paper is probably a whiteboard conversation with Will Farr where we tracked down a difference in prior assumptions approaching the problem two different ways). This is all explained in the Methods, it’s not easy to read, but makes sense when you work through. The result is H_0 = 70^{+12}_{-8}~\mathrm{km\,s^{-1}\,Mpc^{-1}} (quoted as maximum a posteriori value and 68% interval, or 74^{+33}_{-12}~\mathrm{km\,s^{-1}\,Mpc^{-1}} in the usual median-and-90%-interval convention). An updated set of results is given in the GW170817 Properties Paper: H_0 = 70^{+19}_{-8}~\mathrm{km\,s^{-1}\,Mpc^{-1}} (68% interval using the low-spin prior). This is nicely (and diplomatically) consistent with existing results.

The distance has considerable uncertainty because there is a degeneracy between the distance and the orbital inclination (the angle of the normal to the orbital plane relative to the line of sight). If you could figure out the inclination from another observation, then you could tighten constraints on the Hubble constant, or if you’re willing to adopt one of the existing values of the Hubble constant, you can pin down the inclination. Data (updated data) to help you try this yourself are available [citation note].

GW170817 Hubble constant vs inclination

Two-dimensional posterior probability distribution for the Hubble constant and orbital inclination inferred from GW170817. The contours mark 68% and 95% levels. The coloured bands are measurements from the cosmic microwave background (Planck) and supernovae (SH0ES). Figure 2 of the GW170817 Hubble Constant Paper.

In the future we’ll be able to combine multiple events to produce a more precise gravitational-wave estimate of the Hubble constant. Chen, Fishbach & Holz (2017) is a recent study of how measurements should improve with more events: we should get to 4% precision after around 100 detections.

The GW170817 Kilonova Paper

Synopsis: GW170817 Kilonova Paper
Read this if: You want to check our predictions for ejecta against observations
Favourite part: We might be able to create all of the heavy r-process elements—including the gold used to make Nobel Prizes—from merging neutron stars

When two neutron stars collide, lots of material gets ejected outwards. This neutron-rich material undergoes nuclear decay—now no longer being squeezed by the strong gravity inside the neutron star, it is unstable, and decays from the strange neutron star stuff™ to become more familiar elements (elements heavier than iron including gold and platinum). As these r-process elements are created, the nuclear reactions power a kilonova, the optical (infrared–ultraviolet) transient accompanying the merger. The properties of the kilonova depends upon how much material is ejected.

In this paper, we try to estimate how much material made up the dynamical ejecta from the GW170817 collision. Dynamical ejecta is material which escapes as the two neutron stars smash into each other (either from tidal tails or material squeezed out from the collision shock). There are other sources of ejected material, such as winds from the accretion disk which forms around the remnant (whether black hole or neutron star) following the collision, so this is only part of the picture; however, we can estimate the mass of the dynamical ejecta from our gravitational-wave measurements using simulations of neutron star mergers. These estimates can then be compared with electromagnetic observations of the kilonova [citation note].

The amount of dynamical ejecta depends upon the masses of the neutron stars, how rapidly they are rotating, and the properties of the neutron star material (described by the equation of state). Here, we use the masses inferred from our gravitational-wave measurements and feed these into fitting formulae calibrated against simulations for different equations of state. These don’t include spin, and they have quite large uncertainties (we include a 72% relative uncertainty when producing our results), so these are not precision estimates. Neutron star physics is a little messy.

We find that the dynamical ejecta is 10^{-3}10^{-2} M_\odot (assuming the low-spin mass results). These estimates can be feed into models for kilonovae to produce lightcurves, which we do. There is plenty of this type of modelling in the literature as observers try to understand their observations, so this is nothing special in terms of understanding this event. However, it could be useful in the future (once we have hoverboards), as we might be able to use gravitational-wave data to predict how bright a kilonova will be at different times, and so help astronomers decide upon their observing strategy.

Finally, we can consider how much r-process elements we can create from the dynamical ejecta. Again, we don’t consider winds, which may also contribute to the total budget of r-process elements from binary neutron stars. Our estimate for r-process elements needs several ingredients: (i) the mass of the dynamical ejecta, (ii) the fraction of the dynamical ejecta converted to r-process elements, (iii) the merger rate of binary neutron stars, and (iv) the convolution of the star formation rate and the time delay between binary formation and merger (which we take to be \propto t^{-1}). Together (i) and (ii) give the mass of r-process elements per binary neutron star (assuming that GW170817 is typical); (iii) and (iv) give total density of mergers throughout the history of the Universe, and combining everything together you get the total mass of r-process elements accumulated over time. Using the estimated binary neutron star merger rate of 1540_{-1220}^{+3200}~\mathrm{Gpc^{-3}\,yr^{-1}}, we can explain the Galactic abundance of r-process elements if more than about 10% of the dynamical ejecta is converted.

Binary neutron star merger rate, ejecta mass and r-process element abundance

Present day binary neutron star merger rate density versus dynamical ejecta mass. The grey region shows the inferred 90% range for the rate, the blue shows the approximate range of ejecta masses, and the red band shows the band where the Galactic elemental abundance can be reproduced if at least 50% of the dynamical mass gets converted. Part of Figure 5 of the GW170817 Kilonova Paper.

The GW170817 Stochastic Paper

Synopsis: GW170817 Stochastic Paper
Read this if: You’re impatient for finding a background of gravitational waves
Favourite part: The background symphony

For every loud gravitational-wave signal, there are many more quieter ones. We can’t pick these out of the detector noise individually, but they are still there, in our data. They add together to form a stochastic background, which we might be able to detect by correlating the data across our detector network.

Following the detection of GW150914, we considered the background due to binary black holes. This is quite loud, and might be detectable in a few years. Here, we add in binary neutron stars. This doesn’t change the picture too much, but gives a more accurate picture.

Binary black holes have higher masses than binary neutron stars. This means that their gravitational-wave signals are louder, and shorter (they chirp quicker and chirp up to a lower frequency). Being louder, binary black holes dominate the overall background. Being shorter, they have a different character: binary black holes form a popcorn background of short chirps which rarely overlap, but binary neutron stars are long enough to overlap, forming a more continuous hum.

The dimensionless energy density at a gravitational-wave frequency of 25 Hz from binary black holes is 1.1_{-0.7}^{+1.2} \times 10^{-9}, and from binary neutron stars it is 0.7_{-0.6}^{+1.5} \times 10^{-9}. There are on average 0.06_{-0.04}^{+0.06} binary black hole signals in detectors at a given time, and 15_{-12}^{+31} binary neutron star signals.

Simulated background of overlapping binary signals

Simulated time series illustrating the difference between binary black hole (green) and binary neutron star (red) signals. Each chirp increases in amplitude until the point at which the binary merges. Binary black hole signals are short, loud chirps, while the longer, quieter binary neutron star signals form an overlapping background. Figure 2 from the GW170817 Stochastic Paper.

To calculate the background, we need the rate of merger. We now have an estimate for binary neutron stars, and we take the most recent estimate from the GW170104 Discovery Paper for binary black holes. We use the rates assuming the power law mass distribution for this, but the result isn’t too sensitive to this: we care about the number of signals in the detector, and the rates are derived from this, so they agree when working backwards. We evolve the merger rate density across cosmic history by factoring in the star formation rate and delay time between formation and merger. A similar thing was done in the GW170817 Kilonova Paper, here we used a slightly different star formation rate, but results are basically the same with either. The addition of binary neutron stars increases the stochastic background from compact binaries by about 60%.

Detection in our next observing run, at a moderate significance, is possible, but I think unlikely. It will be a few years until detection is plausible, but the addition of binary neutron stars will bring this closer. When we do detect the background, it will give us another insight into the merger rate of binaries.

The GW170817 Progenitor Paper

Synopsis: GW170817 Progenitor Paper
Read this if: You want to know about neutron star formation and supernovae
Favourite part: The Spirography figures

The identification of NGC 4993 as the host galaxy of GW170817’s binary neutron star system allows us to make some deductions about how it formed. In this paper, we simulate a large number of binaries, tracing the later stages of their evolution, to see which ones end up similar to GW170817. By doing so, we learn something about the supernova explosion which formed the second of the two neutron stars.

The neutron stars started life as a pair of regular stars [bonus note]. These burned through their hydrogen fuel, and once this is exhausted, they explode as a supernova. The core of the star collapses down to become a neutron star, and the outer layers are blasted off. The more massive star evolves faster, and goes supernova first. We’ll consider the effects of the second supernova, and the kick it gives to the binary: the orbit changes both because of the rocket effect of material being blasted off, and because one of the components loses mass.

From the combination of the gravitational-wave and electromagnetic observations of GW170817, we know the masses of the neutron star, the type of galaxy it is found in, and the position of the binary within the galaxy at the time of merger (we don’t know the exact position, just its projection as viewed from Earth, but that’s something).

Post-supernova orbits in model NGC 4993

Orbital trajectories of simulated binaries which led to GW170817-like merger. The coloured lines show the 2D projection of the orbits in our model galaxy. The white lines mark the initial (projected) circular orbit of the binary pre-supernova, and the red arrows indicate the projected direction of the supernova kick. The background shading indicates the stellar density. Figure 4 of the GW170817 Progenitor Paper; animated equivalents can be found in the Science Summary.

We start be simulating lots of binaries just before the second supernova explodes. These are scattered at different distances from the the centre of the galaxy, have different orbital separations, and have different masses of the pre-supernova star. We then add the effects of the supernova, adding in a kick. We fix then neutron star masses to match those we inferred from the gravitational wave measurements. If the supernova kick is too big, the binary flies apart and will never merge (boo). If the binary remains bound, we follow its evolution as it moves through the galaxy. The structure of the galaxy is simulated as a simple spherical model, a Hernquist profile for the stellar component and a Navarro–Frenk–White profile for the dark matter halo [citation note], which are pretty standard. The binary shrinks as gravitational waves are emitted, and eventually merge. If the merger happens at a position which matches our observations (yay), we know that the initial conditions could explain GW170817.

Inferred supernova kick, progenitor stellar mass, pre-supernova orbital separation and supernova galactic radius

Inferred progenitor properties: (second) supernova kick velocity, pre-supernova progenitor mass, pre-supernova binary separation and galactic radius at time of the supernova. The top row shows how the properties vary for different delay times between supernova and merger. The middle row compares all the binaries which survive the second supernova compared with the GW170817-like ones. The bottom row shows parameters for GW170817-like binaries with different galactic offsets than the 1.8~\mathrm{kpc} to 2.2~\mathrm{kpc} range used for GW1708017. The middle and bottom rows assume a delay time of at least 1~\mathrm{Gyr}. Figure 5 of the GW170817 Progenitor Paper; to see correlations between parameters, check out Figure 8 of the GW170817 Progenitor Paper.

The plot above shows the constraints on the progenitor’s properties. The inferred second supernova kick is V_\mathrm{kick} \simeq 300_{-200}^{+250}~\mathrm{km\,s^{-1}}, similar to what has been observed for neutron stars in the Milky Way; the per-supernova stellar mass is M_\mathrm{He} \simeq 3.0_{-1.5}^{+3.5} M_\odot (we assume that the star is just a helium core, with the outer hydrogen layers having been stripped off, hence the subscript); the pre-supernova orbital separation was R_\odot \simeq 3.5_{-1.5}^{+5.0} R_\odot, and the offset from the the centre of the galaxy at the time of the supernova was 2.0_{-1.5}^{+4.0}~\mathrm{kpc}. The main strongest constraints come from keeping the binary bound after the supernova; results are largely independent of the delay time once this gets above 1~\mathrm{Gyr} [citation note].

As we collect more binary neutron star detections, we’ll be able to deduce more about how they form. If you’re interested more in the how to build a binary neutron star system, the introduction to this paper is well referenced; Tauris et al. (2017) is a detailed (pre-GW170817) review.

The GW170817 Neutrino Paper

Synopsis: GW170817 Neutrino Paper
Read this if: You want a change from gravitational wave–electromagnetic multimessenger astronomy
Favourite part: There’s still something to look forward to with future detections—GW170817 hasn’t stolen all the firsts. Also this paper is not Abbot et al.

This is a joint search by ANTARES, IceCube and the Pierre Auger Observatory for neutrinos coincident with GW170817. Knowing both the location and the time of the binary neutron star merger makes it easy to search for counterparts. No matching neutrinos were detected.

GW170817 localization and neutrino candidates

Neutrino candidates at the time of GW170817. The map is is in equatorial coordinates. The gravitational-wave localization is indicated by the red contour, and the galaxy NGC 4993 is indicated by the black cross. Up-going and down-going regions for each detector are indicated, as detectors are more sensitive to up-going neutrinos, as the Cherenkov detectors are subject to a background from cosmic rays hitting the atmosphere. Figure 1 from the GW170817 Neutrino Paper.

Using the non-detections, we can place upper limits on the neutrino flux. These are summarised in the plots below. Optimistic models for prompt emission from an on axis gamma-ray burst would lead to a detectable flux, but otherwise theoretical predictions indicate that a non-detection is expected. From electromagnetic observations, it doesn’t seem like we are on-axis, so the story all fits together.

Neutrino upper limits

90% confidence upper limits on neutrino spectral fluence F per flavour (electron, muon and tau) as a function of energy E in \pm 500~\mathrm{s} window (top) about the GW170817 trigger time, and a 14~\mathrm{day} window following GW170817 (bottom). IceCube is also sensitive to MeV neutrinos (none were detected). Fluences are the per-flavour sum of neutrino and antineutrino fluence, assuming equal fluence in all flavours. These are compared to theoretical predictions from Kimura et al. (2017) and Fang & Metzger (2017), scaled to a distance of 40 Mpc. The angles labelling the models are viewing angles in excess of the jet opening angle. Figure 2 from the GW170817 Neutrino paper.

Super-Kamiokande have done their own search for neutrinos, form 3.5~\mathrm{MeV} to around 100~\mathrm{PeV} (Abe et al. 2018). They found nothing in either the \pm 500~\mathrm{s} window around the event or the 14~\mathrm{day} window following it.

The only post-detection neutrino modelling paper I’ve seen is Biehl, Heinze, &Winter (2017). They model prompt emission from the same source as the gamma-ray burst and find that neutrino fluxes would be 10^{-4} of current sensitivity.

The GW170817 Post-merger Paper

Synopsis: GW170817 Post-merger Paper
Read this if: You are an optimist
Favourite part: We really do check everywhere for signals

Following the inspiral of two black holes, we know what happens next: the black holes merge to form a bigger black hole, which quickly settles down to its final stable state. We have a complete model of the gravitational waves from the inspiral–merger–ringdown life of coalescing binary black holes. Binary neutron stars are more complicated.

The inspiral of two binary neutron stars is similar to that for black holes. As they get closer together, we might see some imprint of tidal distortions not present for black holes, but the main details are the same. It is the chirp of the inspiral which we detect. As the neutron stars merge, however, we don’t have a clear picture of what goes on. Material gets shredded and ejected from the neutron stars; the neutron stars smash together; it’s all rather messy. We don’t have a good understanding of what should happen when our neutron stars merge, the details depend upon the properties of the stuff™ neutron stars are made of—if we could measure the gravitational-wave signal from this phase, we would learn a lot.

There are four plausible outcomes of a binary neutron star merger:

  1. If the total mass is below the maximum mass for a (non-rotating) neutron star (M < M^\mathrm{Static}), we end up with a bigger, but still stable neutron star. Given our inferences from the inspiral (see the plot from the GW170817 Gamma-ray Burst Paper below), this is unlikely.
  2. If the total mass is above the limit for a stable, non-rotating neutron star, but can still be supported by uniform rotation (M^\mathrm{Static} < M < M^\mathrm{Uniform}), we have a supramassive neutron star. The rotation will slow down due to the emission of electromagnetic and gravitational radiation, and eventually the neutron star will collapse to a black hole. The time until collapse could take something like 105 \times 10^4~\mathrm{s}; it is unclear if this is long enough for supramassive neutron stars to have a mid-life crisis.
  3. If the total mass is above the limit for support from uniform rotation, but can still be supported through differential rotation and thermal gradients(M^\mathrm{Uniform} < M < M^\mathrm{Differential}), then we have a hypermassive neutron star. The hypermassive neutron star cools quickly through neutrino emission, and its rotation slows through magnetic braking, meaning that it promptly collapses to a black hole in \lesssim 1~\mathrm{s}.
  4. If the total mass is big enough(M^\mathrm{Differential} < M), the merging neutron stars collapse down to a black hole.

In the case of the collapse to a black hole, we get a ringdown as in the case of a binary black hole merger. The frequency is around 6~\mathrm{kHz}, too high for us to currently measure. However, if there is a neutron star, there may be slightly lower frequency gravitational waves from the neutron star matter wibbling about. We’re not exactly sure of the form of these signals, so we perform an unmodelled search for them (knowing the position of GW170817’s source helps for this).

Maximum neutron star masses

Comparison of inferred component masses with critical mass boundaries for different equations of state. The left panel shows the maximum mass of a non-rotating neutron star compared to the initial baryonic mass (ignoring material ejected during merger and gravitational binding energy); the middle panel shows the maximum mass for a uniformly rotating neutron star; the right panel shows the maximum mass of a non-rotating neutron star compared of the gravitational mass of the heavier component neutron star. Figure 3 of the GW170817 Gamma-ray Burst Paper.

Several different search algorithms were used to hunt for a post-merger signal:

  1. coherent WaveBurst (cWB) was used to look for short duration (< 1~\mathrm{s}) bursts. This searched a 2~\mathrm{s} window including the merger time and covering the 1.7~\mathrm{s} delay to the gamma-ray burst detection, and frequencies of 10244096~\mathrm{Hz}. Only LIGO data were used, as Virgo data suffered from large noise fluctuations above 2.5~\mathrm{kHz}.
  2. cWB was used to look for intermediate duration (< 500~\mathrm{s}) bursts. This searched a 1000~\mathrm{s} window from the merger time, and frequencies 242048~\mathrm{Hz}. This used LIGO and Virgo data.
  3. The Stochastic Transient Analysis Multi-detector Pipeline (STAMP) was also used to look for intermediate duration signals. This searched the merger time until the end of O2 (in 500~\mathrm{s} chunks), and frequencies 244000~\mathrm{Hz}. This used only LIGO data. There are two variations of STAMP: Zebragard and Lonetrack, and both are used here.

Although GEO is similar to LIGO and Virgo and the searched high-frequencies, its data were not used as we have not yet studied its noise properties in enough detail. Since the LIGO detectors are the most sensitive, their data is most important for the search.

No plausible candidates were found, so we set some upper limits on what could have been detected. From these, it is not surprising that nothing was found, as we would need pretty much all of the mass of the remnant to somehow be converted into gravitational waves to see something. Results are shown in the plot below. An updated analysis which puts upper limits on the post-merger signal is given in the GW170817 Properties Paper.

Detector sensitivities and search upper limits

Noise amplitude spectral density \sqrt{S_n} for the four detectors, and search upper limits h_\mathrm{rss} as a function of frequency. The noise amplitude spectral densities compare the sensitivities of the detectors. The search upper limits are root-sum-squared strain amplitudes at 50% detection efficiency. The colour code of the upper-limit markers indicates the search algorithm and the shape indicates the waveform injected to set the limits (the frequency is the average for this waveform). The bar mode waveform come from the rapid rotation of the supramassive neutron star leading to it becoming distorted (stretched) in a non-axisymmetric way (Lasky, Sarin & Sammut 2017); the magnetar waveform assumes that the (rapidly rotating) supramassive neutron star’s magnetic field generates significant ellipticity (Corsi & Mészáros 2009); the short-duration merger waveforms are from a selection of numerical simulations (Bauswein et al. 2013; Takami et al. 2015; Kawamura et al. 2016; Ciolfi et al. 2017). The open squares are merger waveforms scaled to the distance and orientation inferred from the inspiral of GW170817. The dashed black lines show strain amplitudes for a narrow-band signal with fixed energy content: the top line is the maximum possible value for GW170817. Figure 1 of the GW170817 Post-merger Paper.

We can’t tell the fate of GW170817’s neutron stars from gravitational waves alone [citation note]. As high-frequency sensitivity is improved in the future, we might be able to see something from a really close by binary neutron star merger.

The GW170817 Properties Paper

Synopsis: GW170817 Properties Paper
Read this if: You want the best results for GW170817’s source, our best measurement of the Hubble constant, or limits on the post-merger signal
Favourite part: Look how tiny the uncertainties are!

As time progresses, we often refine our analyses of gravitational-wave data. This can be because we’ve had time to recalibrate data from our detectors, because better analysis techniques have been developed, or just because we’ve had time to allow more computationally intensive analyses to finish. This paper is our first attempt at improving our inferences about GW170817. The results use an improved calibration of Virgo data, and analyses more of the signal (down to a low frequency of 23 Hz, instead of 30 Hz, which gives use about an extra 1500 cycles), uses improved models of the waveforms, and includes a new analysis looking at the post-merger signal. The results update those given in the GW170817 Discovery Paper, the GW170817 Hubble Constant Paper and the GW170817 Post-merger Paper.

Inspiral

Our initial analysis was based upon quick to calculate post-Newtonian waveform known as TaylorF2. We thought this should be a conservative choice: any results with more complicated waveforms should give tighter results. This worked out. We try several different waveform models, each based upon the point particle waveforms we use for analysing binary black hole signals with extra bits to model the tidal deformation of neutron stars. The results are broadly consistent, so I’ll concentrate on discussing our preferred results calculated using IMRPhenomPNRT waveform (which uses IMRPhenomPv2 as a base and adds on numerical-relativity calibrated tides). As in the GW170817 Discovery Paper, we perform the analysis with two priors on the binary spins, one with spins up to 0.89 (which should safely encompass all possibilities for neutron stars), and one with spins of up to 0.05 (which matches observations of binary neutron stars in our Galaxy).

The first analysis we did was to check the location of the source. Reassuringly, we are still perfectly consistent with the location of AT 2017gfo (phew!). The localization is much improved, the 90% sky area is down to just 16~\mathrm{deg^2}! Go Virgo!

Having established that it still makes sense that AT 2017gfo pin-points the source location, we use this as the position in subsequent analyses. We always use the sky position of the counterpart and the redshift of the host galaxy (Levan et al. 2017), but we don’t typically use the distance. This is because we want to be able to measure the Hubble constant, which relies on using the distance inferred from gravitational waves.

We use the distance from Cantiello et al. (2018) [citation note] for one calculation: an estimation of the inclination angle. The inclination is degenerate with the distance (both affect the amplitude of the signal), so having constraints on one lets us measure the other with improved precision. Without the distance information, we find that the angle between the binary’s total angular momentum and the line of sight is 152^{+21}_{-27}~\mathrm{deg} for the high-spin prior and 146^{+25}_{-27}~\mathrm{deg} with the low-spin prior. The difference between the two results is because of the spin angular momentum slightly shifts the direction of the total angular momentum. Incorporating the distance information, for the high-spin prior the angle is 153^{+15}_{-11}~\mathrm{deg} (so the misalignment angle is 27^{+11}_{-15}~\mathrm{deg}), and for the low-spin prior it is 151^{+15}_{-11}~\mathrm{deg} (misalignment 29^{+11}_{-15}~\mathrm{deg}) [citation note].

Orientation and magnitudes of the two spins

Estimated orientation and magnitude of the two component spins. The left pair is for the high-spin prior and so magnitudes extend to 0.89, and the right pair are for the low-spin prior and extend to 0.05. In each, the distribution for the more massive component is on the left, and for the smaller component on the right. The probability is binned into areas which have uniform prior probabilities. The low-spin prior truncates the posterior distribution, but this is less of an issue for the high-spin prior. Results are shown at a point in the inspiral corresponding to a gravitational-wave frequency of 100~\mathrm{Hz}. Parts of Figure 8 and 9 of the GW170817 Properties Paper.

Main results include:

  • The luminosity distance is 38.7^{+14.3}_{-7.4}~\mathrm{Mpc} with the the los-spin prior and 40.8^{+12.3}_{-5.6}~\mathrm{Mpc} with the high-spin prior. The difference is a for the same reason as the difference in inclination measurements. The results are consistent with the distance to NGC 4993 [citation note].
  • The chirp mass redshifted to the detector-frame is measured to be 1.1975^{+0.0001}_-{0.0001} M_\odot with the low-spin prior and 1.1976^{+0.0001}_-{0.0001} M_\odot with the high-spin. This corresponds to a physical chirp mass of 1.186_{-0.001}^{+0.001} M_\odot.
  • The spins are not well constrained. We get the best measurement along the direction of the orbital angular momentum. For the low-spin prior, this is enough to disfavour the spins being antialigned, but that’s about it. For the high-spin prior, we rule out large spins aligned or antialigned, and very large spins in the plane. The aligned components of the spin are best described by the effective inspiral spin parameter \chi_\mathrm{eff}, for the low-spin prior it is 0.00^{+0.02}_{-0.01} and for the high-spin prior it is 0.02^{+0.08}_{-0.02}.
  • Using the low-spin prior, the component masses are m_1 = 1.361.60 M_\odot and m_2 = 1.161.36 M_\odot, and for the high-spin prior they are m_1 = 1.361.89 M_\odot and m_2 = 1.001.36 M_\odot.

These are largely consistent with our previous results. There are small shifts, but the biggest change is that the errors are a little smaller.

Binary neutron star masses

Estimated masses for the two neutron stars in the binary using the high-spin (left) and low-spin (right) priors. The two-dimensional plot follows a line of constant chirp mass which is too narrow to resolve on this scale. Results are shown for four different waveform models. TaylorF2 (used in the initial analysis), IMRPhenomDNRT and SEOBNRT have aligned spins, while IMRPhenomPNRT includes spin precession. IMRPhenomPNRT is used for the main results.Figure 5 of the GW170817 Properties Paper.

For the Hubble constant, we find H_0 = 70^{+19}_{-8}~\mathrm{km\,s^{-1}\,Mpc^{-1}} with the low-spin prior and H_0 = 70^{+13}_{-7}~\mathrm{km\,s^{-1}\,Mpc^{-1}} with the high-spin prior. Here, we quote maximum a posterior value and narrowest 68% intervals as opposed to the the usual median and symmetric 90% credible interval. You might think its odd that the uncertainty is smaller when using the wider high-spin prior, but this is just another consequence of the difference in the inclination measurements. The values are largely in agreement with our initial values.

The best measured tidal parameter is the combined dimensionless tidal deformability \tilde{\Lambda}. With the high-spin prior, we can only set an upper bound of \tilde{\Lambda} < 630 . With the low-spin prior, we find that we are still consistent with zero deformation, but the distribution peaks away from zero. We have \tilde{\Lambda} = 300^{+500}_{-190} using the usual median and symmetric 90% credible interval, and \tilde{\Lambda} = 300^{+420}_{-230} if we take the narrowest 90% interval. This looks like we have detected matter effects, but since we’ve had to use the low-spin prior, which is only appropriate for neutron stars, this would be a circular argument. More details on what we can learn about tidal deformations and what neutron stars are made of, under the assumption that we do have neutron stars, are given in the GW170817 Equation-of-state Paper.

Post-merger

Previously, in the GW170817 Post-merger Paper, we searched for a post-merger signal. We didn’t find anything. Now, we try to infer the shape of the signal, assuming it is there (with a peak within 250~\mathrm{ms} of the coalescence time). We still don’t find anything, but now we set much tighter upper limits on what signal there could be there.

For this analysis, we use data from the two LIGO detectors, and from GEO 600! We don’t use Virgo data, as it is not well behaved at these high frequencies. We use BayesWave to try to constrain the signal.

Detector sensitivities and signal strain upper limits

Noise amplitude spectral density for the detectors used, prior and posterior strain upper limits, and selected numerical simulations as a function of frequency. The signal upper limits are Bayesian 90% credible bounds for the signal in Hanford, but is derived from a coherent analysis of all three indicated detectors. Figure 13 of the GW170817 Properties Paper.

While the upper limits are much better, they are still about 12–215 times larger than expectations from simulations. Therefore, we’d need to improve our detector sensitivity by about a factor of 3.5–15 to detect a similar signal. Fingers crossed!

The GW170817 Equation-of-state Paper

Synopsis: GW170817 Equation-of-state Paper
Read this if: You want to know what neutron stars are made of
Favourite part: The beautiful butterfly plots

Usually in our work, we like to remain open minded and not make too many assumptions. In our analysis of GW170817, as presented in the GW170817 Properties Paper, we have remained agnostic about the components of the binary, seeing what the data tell us. However, from the electromagnetic observations, there is solid evidence that the source is a binary neutron star system. In this paper, we take it as granted that the source is made of two neutron stars, and that these neutron stars are made of similar stuff™, to see what we can learn about the properties of neutron stars.

When a two neutron stars get close together, they become distorted by each other’s gravity. Tides are raised, kind of like how the Moon creates tides on Earth. Creating tides takes energy out of the orbit, causing the inspiral to proceed faster. This is something we can measure from the gravitational wave signal. Tides are larger when the neutron stars are bigger. The size of neutron stars and how easy they are the stretch and squash depends upon their equation of state. We can use the measurements of the neutron star masses and amount of tidal deformation to infer their size and their equation of state.

The signal is analysed as in the GW170817 Properties Paper (IMRPhenomPNRT waveform, low-spin prior, position set to match AT 2017gfo). However, we also add in some information about the composition of neutron stars.

Calculating the behaviour of this incredibly dense material is difficult, but there are some relations between the tidal deformability of neutron stars and their radii which are insensitive to the details of the equation of state. One relates symmetric and antisymmetric combinations of the tidal deformations of the two neutron stars as a function of the mass ratio, allows us to calculate consistent tidal deformations. Another relates the tidal deformation to the compactness (mass divided by radius) allows us to convert tidal deformations to radii. The analysis includes the uncertainty in these relations.

In addition to this, we also use a parametric model of the equation of state to model the tidal deformations. By sampling directly in terms of the equation of state, it is easy to impose constraints on the allowed values. For example, we impose that the speed of sound inside the neutron star is less than the speed of light, that the equation of state can support neutron stars of that mass, that it is possible to explain the most massive confirmed neutron star (we use a lower limit for this mass of 1.97 M_\odot), as well as it being thermodynamically stable. Accommodating the most massive neutron star turns out to be an important piece of information.

The plot below shows the inferred tidal deformation parameters for the two neutron stars. The two techniques, using the equation-of-state insensitive relations and using the parametrised equation-of-state model without included the constraint of matching the 1.97 M_\odot neutron star, give similar results. For a 1.4 M_\odot neutron star, these results indicate that the tidal deformation parameter would be \Lambda_{1.4} = 190^{+390}_{-120}. We favour softer equations of state over stiffer ones [citation note]. I think this means that neutron stars are more huggable.

Tidal deformations assuming neutron star components for GW170817's source

Probability distributions for the tidal parameters of the two neutron stars. The tidal deformation of the more massive neutron star \Lambda_1 must be greater than that for the smaller neutron star \Lambda_2. The green shading and (50% and 90%) contours are calculated using the equation-of-state insensitive relations. The blue contours are for the parametrised equation-of-state model. The orange contours are from the GW170817 Properties Paper, where we don’t assume a common equation of state. The black lines are predictions from a selection of different equations of state Figure 1 of the GW170817 Equation-of-state Paper.

We can translate our results into estimates on the size of the neutron stars. The plots below show the inferred radii. The results for the parametrised equation-of-state model now includes the constraint of accommodating a 1.97 M_\odot neutron star, which is the main reason for the difference in the plots. Using the equation-of-state insensitive relations we find that the radius of the heavier (m_1 = 1.361.62M_\odot) neutron star is R_1 = 10.8^{+2.0}_{-1.7}~\mathrm{km} and the radius of the lighter (m_2 = 1.151.36M_\odot) neutron star is R_2 = 10.7^{+2.1}_{-1.5}~\mathrm{km}. With the parametrised equation-of-state model, the radii are R_1 = 11.9^{+1.4}_{-1.4}~\mathrm{km} (m_1 = 1.361.58M_\odot) and R_2 = 11.9^{+1.4}_{-1.4}~\mathrm{km} (m_2 = 1.181.36M_\odot).

Neutron star masses and radii

Posteriro probability distributions for neutron star masses and radi (blue for the more massive neutron star, orange for the lighter)i. The left plot uses the equation-of-state insensitive relations, and the right uses the parametrised equation-of-state model. In the one-dimensional plots, the dashed lines indicate the priors. The lines in the top left indicate the size of a Schwarzschild Black hole and the Buchadahl limit for the collapse of a neutron star. Figure 3 of the GW170817 Equation-of-state Paper.

When I was an undergraduate, I remember learning that neutron stars were about 15~\mathrm{km} in radius. We now know that’s not the case.

If you want to investigate further, you can download the posterior samples from these analyses.

Bonus notes

Standard sirens

In astronomy, we often use standard candles, objects like type IA supernovae of known luminosity, to infer distances. If you know how bright something should be, and how bright you measure it to be, you know how far away it is. By analogy, we can infer how far away a gravitational-wave source is by how loud it is. It is thus not a candle, but a siren. Sean Carrol explains more about this term on his blog.

Nature

I know… Nature published the original Schutz paper on measuring the Hubble constant using gravitational waves; therefore, there’s a nice symmetry in publishing the first real result doing this in Nature too.

Globular clusters

Instead of a binary neutron star system forming from a binary of two stars born together, it is possible for two neutron stars to come close together in a dense stellar environment like a globular cluster. A significant fraction of binary black holes could be formed this way. Binary neutron stars, being less massive, are not as commonly formed this way. We wouldn’t expect GW170817 to have formed this way. In the GW170817 Progenitor Paper, we argue that the probability of GW170817’s source coming from a globular cluster is small—for predicted rates, see Bae, Kim & Lee (2014).

Levan et al. (2017) check for a stellar cluster at the site of AT 2017gfo, and find nothing. The smallest 30% of the Milky Way’s globular clusters would evade this limit, but these account for just 5% of the stellar mass in globular clusters, and a tiny fraction of dynamical interactions. Therefore, it’s unlikely that a cluster is the source of this binary.

Citation notes

Merger rates

From our gravitational-wave data, we estimate the current binary neutron star merger rate density is 1540_{-1220}^{+3200}~\mathrm{Gpc^{-3}\,yr^{-1}}. Several electromagnetic observers performed their own rate estimates from the frequency of detection (or lack thereof) of electromagnetic transients.

Kasliwal et al. (2017) consider transients seen by the Palomar Transient Factory, and estimate a rate density of approximately 320~\mathrm{Gpc^{-3}\,yr^{-1}} (3-sigma upper limit of 800~\mathrm{Gpc^{-3}\,yr^{-1}}), towards the bottom end of our range, but their rate increases if not all mergers are as bright as AT 2017gfo.

Siebert et al. (2017) works out the rate of AT 2017gfo-like transients in the Swope Supernova Survey. They obtain an upper limit of 16000~\mathrm{Gpc^{-3}\,yr^{-1}}. They use to estimate the probability that AT 2017gfo and GW170817 are just a chance coincidence and are actually unrelated. The probability is 9 \times 10^{-6} at 90% confidence.

Smartt et al. (2017) estimate the kilonova rate from the ATLAS survey, they calculate a 95% upper limit of 30000~\mathrm{Gpc^{-3}\,yr^{-1}}, safely above our range.

Yang et al. (2017) calculates upper limits from the DLT40 Supernova survey. Depending upon the reddening assumed, this is between 93000^{+16000}_{-18000}~\mathrm{Gpc^{-3}\,yr^{-1}} and 109000^{+28000}_{-18000}~\mathrm{Gpc^{-3}\,yr^{-1}}. Their figure 3 shows that this is well above expected rates.

Finally, Zhang et al. (2017) is interested in the rate of gamma-ray bursts. If you know the rate of short gamma-ray bursts and of binary neutron star mergers, you can learn something about the beaming angle of the jet. The smaller the jet, the less likely we are to observe a gamma-ray burst. In order to do this, they do their own back-of-the-envelope for the gravitational-wave rate. They get 1100_{-910}^{+2500}~\mathrm{Gpc^{-3}\,yr^{-1}}. That’s not too bad, but do stick with our result.

If you’re interested in the future prospects for kilonova detection, I’d recommend Scolnic et al. (2017). Check out their Table 2 for detection rates (assuming a rate of 1000~\mathrm{Gpc^{-3}\,yr^{-1}}): LSST and WFIRST will see lots, about 7 and 8 per year respectively.

The electromagnetic story

Some notes on an incomplete overview of papers describing the electromagnetic discovery. A list of the first wave of papers was compiled by Maria Drout, Stefano Valenti, and Iair Arcavi as a starting point for further reading.

Independently of our gravitational-wave detection, a short gamma-ray burst GRB 170817A was observed by Fermi-GBM (Goldstein et al. 2017). Fermi-LAT did not see anything, as it was offline for crossing through the South Atlantic Anomaly. At the time of the merger, INTEGRAL was following up the location of GW170814, fortunately this meant it could still observe the location of GW170817, and following the alert they found GRB 170817A in their data (Savchenko et al. 2017).

Following up on our gravitational-wave localization, an optical transient AT 2017gfo was discovered. The discovery was made by the One-Meter Two-Hemisphere (1M2H) collaboration using the Swope telescope at the Las Campanas Observatory in Chile; they designated the transient as SSS17a (Coulter et al. 2017). That same evening, several other teams also found the transient within an hour of each other:

  • The Distance Less Than 40 Mpc (DLT40) search found the transient using the PROMPT 0.4-m telescope at the Cerro Tololo Inter-American Observatory in Chile; they designated the transient DLT17ck (Valenti et al. 2017).
  • The VINROUGE collaboration (I think, they don’t actually identify themselves in their own papers) found the transient using VISTA at the European Southern Observatory in Chile (Tanvir et al. 2017). Their paper also describes follow-up observations with the Very Large Telescope, the Hubble Space Telescope, the Nordic Optical Telescope and the Danish 1.54-m Telescope, and has one of my favourite introduction sections of the discovery papers.
  • The MASTER collaboration followed up with their network of global telescopes, and it was their telescope at the San Juan National University Observatory in Argentina which found the transient (Lipunov et al. 2017); they, rather catchily denote the transient as OTJ130948.10-232253.3.
  • The Dark Energy Survey and the Dark Energy Camera GW–EM (DES and DECam) Collaboration found the transient with the DECam on the Blanco 4-m telescope, which is also at the Cerro Tololo Inter-American Observatory in Chile (Soares-Santos et al. 2017).
  • The Las Cumbres Observatory Collaboration used their global network of telescopes, with, unsurprisingly, their 1-m telescope at the Cerro Tololo Inter-American Observatory in Chile first imaging the transient (Arcavi et al. 2017). Their observing strategy is described in a companion paper (Arcavi et al. 2017), which also describes follow-up of GW170814.

From these, you can see that South America was the place to be for this event: it was night at just the right time.

There was a huge amount of follow-up across the infrared–optical–ultraviolet range of AT 2017gfo. Villar et al. (2017) attempts to bring these together in a consistent way. Their Figure 1 is beautiful.

Ultraviolet–infrared lightcurves

Assembled lightcurves from ultraviolet, optical and infrared observations of AT 2017gfo. The data points are the homogenized data, and the lines are fitted kilonova models. The blue light initially dominates but rapidly fades, while the red light undergoes a slower decay. Figure 1 of Villar et al. (2017).

AT 2017gfo was also the target of observations across the electromagnetic spectrum. An X-ray afterglow was observed 9 days post merger, and 16 days post merger, just as we thought the excitement was over, a radio afterglow was found:

The afterglow will continue to brighten for a while, so we can expect a series of updates:

  • Pooley, Kumar & Wheeler (2017) observed with Chandra 108 and 111 days post merger. Ruan et al. (2017) observed with Chandra 109 days post merger. The large gap in the the X-ray observations from the initial observations is because the Sun got in the way.
  • Mooley et al. (2017) update the GROWTH radio results up to 107 days post merger (the largest span whilst still pre-empting new X-ray observations), observing with the Very Large Array, Australia Telescope Compact Array and Giant Meterewave Radio Telescope.

Excitingly, the afterglow has also now been spotted in the optical:

  • Lyman et al. (2018) observed with Hubble 110 (rest-frame) days post-merger (which is when the Sun was out of the way for Hubble). At this point the kilonova should have faded away, but they found something, and this is quite blue. The conclusion is that it’s the afterglow, and it will peak in about a year.
  • Margutti et al. (2018) brings together Chandra X-ray observations, Very Large Array radio observations and Hubble optical observations. The Hubble observations are 137 days post merger, and the Chandra observations are 153 days and 163 days post-merger. They find that they all agree (including the tentative radio signal at 10 days post-merger). They argue that the emission disfavours on-axis jets and spherical fireballs.
Evolution of radio, optical and X-ray fluxes to 160 days

Evolution of radio, optical and X-ray spectral energy density of the counterpart to GW170817. The radio and X-ray are always dominated by the afterglow, as indicated by them following the same power law. At early times, the optical is dominated by the kilonova, but as this fades, the afterglow starts to dominate. Figure. 1 of Margutti et al. (2018).

The afterglow is now starting to fade.

  • D’Avanzo et al. (2018) observed in X-ray 135 days post-merger with XMM-Newton. They find that the flux is faded compared to the previous trend. They suggest that we’re just at the turn-over, so this is consistent with the most recent Hubble observations.
  • Resmi et al. (2018) observed at low radio frequencies with the Giant Meterwave Radio Telescope. They saw the signal at 1390~\mathrm{MHz} after 67 days post-merger, but this evolves little over the duration of their observations (to day 152 post-merger), also suggesting a turn-over.
  • Dobie et al. (2018) observed in radio 125–200 days post-merger with the Very Large Array and Australia Telescope Compact Array, and they find that the afterglow is starting to fade, with a peak at 149 ± 2 days post-merger.
  • Nynka et al. (2018) made X-ray observations at 260 days post-merger. They conclude the afterglow is definitely fading, and that this is not because of passing of the synchrotron cooling frequency.

The story isn’t over yet!

Shapiro delay

Using the time delay between GW170817 and GRB 170817A, a few other teams also did their own estimation of the Shapiro delay before they knew what was in our GW170817 Gamma-ray Burst Paper.

Our estimate of -2.6 \times 10^{-7} \leq \gamma_\mathrm{GW} - \gamma_\mathrm{EM} \leq 1.2 \times 10 ^{-6} is the most conservative.

Comparison to other gamma-ray bursts

Are the electromagnetic counterparts to GW170817 similar to what has been observed before? Yue et al. (2017) compare GRB 170817A with other gamma-ray bursts. It is low luminosity, but it may not be alone. There could be other bursts like it (perhaps GRB 070923, GRB 080121 and GRB 090417A), if indeed they are from nearby sources. They suggest that GRB 130603B may be the on-axis equivalent of GRB 170817A [citation note]; however, the non-detection of kilonovae for several bursts indicates that there needs to be some variation in their properties too. This agree with the results of Gompertz et al. (2017), who compares the GW170817 observations with other kilonovae: it is fainter than the other candidate kilonovae (GRB 050709, GRB 060614, GRB 130603B and tentatively GRB 160821B), but equally brighter than upper limits from other bursts. There must be a diversity in kilonovae observations. Fong et al. (2017) look at the diversity of afterglows (across X-ray to radio), and again find GW170817’s counterpart to be faint. This is probably because we are off-axis. Future observations will help unravel how much variation there is from viewing different angles, and how much intrinsic variation there is from the source—perhaps some short gamma-ray bursts come from neutron star–black hole binaries?

Inclination, jets and ejecta

Pretty much every observational paper has a go at estimating the properties of the ejecta, the viewing angle or something about the structure of the jet. I may try to pull these together later, but I’ve not had time yet as it is a very long list! Most of the inclination measurements assumed a uniform top-hat jet, which we now know is not a good model.

In my non-expert opinion, the later results seem more interesting. With very-long baseline interferometry radio observations to 230 days post-merger, Mooley et al. (2018) claim that while the early radio emission was powered by the wide cocoon of a structured jet, the later emission is dominated by a narrow, energetic jet. There was a successful jet, so we would have seen something like a regular short gamma-ray burst on axis. They estimate that the jet opening angle is < 5~\mathrm{deg}, and that we are viewing it at an angle of 20 \pm 5~\mathrm{deg}.

Hubble constant and misalignment

Guidorzi et al. (2017) try to tighten the measurement of the Hubble constant by using radio and X-ray observations. Their modelling assumes a uniform jet, which doesn’t look like a currently favoured option [citation note], so there is some model-based uncertainty to be included here. Additionally, the jet is unlikely to be perfectly aligned with the orbital angular momentum, which may add a couple of degrees more uncertainty.

Mandel (2018) works the other way and uses the recent Dark Energy Survey Hubble constant estimate to bound the misalignment angle to less than 28~\mathrm{deg}, which (unsurprisingly) agrees pretty well with the result we obtained using the Planck value. Finstad et al. (2018) uses the luminosity distance from Cantiello et al. (2018) [citation note] as a (Gaussian) prior for an analysis of the gravitational-wave signal, and get a misalignment 32^{+10}_{-13}\pm 2~\mathrm{deg} (where the errors are statistical uncertainty and an estimate of systematic error from calibration of the strain).

Hotokezaka et al. (2018) use the inclination results from Mooley et al. (2018) [citation note] (together with the updated posterior samples from the GW170817 Properties Paper) to infer a value of h = 0.689^{+0.047}_{-0.046} (quoting median and 68% symmetric credible interval). Using different jet models changes their value for the Hubble constant a little; the choice of spin prior does not (since we get basically all of the inclination information from their radio observations). The results is still consistent with Planck and SH0ES, but is closer to the Planck value.

GW170817 Hubble constant with inclination measurements

Posterior probability distribution for the Hubble constant inferred from GW170817 using only gravitational waves (GWs), and folding in models for the power-law jet (PLJ) model and very-long baseline interferometry (VLBI) radio observations. The lines symmetric mark 68% intervals. The coloured bands are measurements from the cosmic microwave background (Planck) and supernovae (SH0ES). Figure 2 of Hotokezaka et al. (2018)

NGC 4993 properties

In the GW170817 Progenitor Paper we used component properties for NGC 4993 from Lim et al. (2017): a stellar mass of (10^{10.454}/h^2) M_\odot and a dark matter halo mass of (10^{12.2}/h) M_\odot, where we use the Planck value of h = 0.679 (but conclusions are similar using the SH0ES value for this).

Blanchard et al. (2017) estimate a stellar mass of about \log(M_\ast/M_\odot) = 10.65^{+0.03}_{-0.03}. They also look at the star formation history, 90% were formed by 6.8^{+2.2}_{-0.8}~\mathrm{Gyr} ago, and the median mass-weighted stellar age is 13.2^{+0.5}_{-0.9}~\mathrm{Gyr}. From this they infer a merger delay time of 6.813.6~\mathrm{Gyr}. From this, and assuming that the system was born close to its current location, they estimate that the supernova kick V_\mathrm{kick} \leq 200~\mathrm{km\,s^{-1}}, towards the lower end of our estimate. They use h = 0.677.

Im et al. (2017) find a mean stellar mass of 0.31.2 \times 10^{11} M_\odot and the mean stellar age is greater than about 3~\mathrm{Gyr}. They also give a luminosity distance estimate of 38.4 \pm 8.9~\mathrm{Mpc}, which overlaps with our gravitational-wave estimate. I’m not sure what value of h they are using.

Levan et al. (2017) suggest a stellar mass of around 1.4 \times 10^{11} M_\odot. They find that 60% of stars by mass are older than 5~\mathrm{Gyr} and that less than 1% are less than 0.5~\mathrm{Gyr} old. Their Figure 5 has some information on likely supernova kicks, they conclude it was probably small, but don’t quantify this. They use h = 0.696.

Pan et al. (2017) find \log(M_\ast/M_\odot) = 10.49^{+0.08}_{-0.20}. They calculate a mass-weighted mean stellar age of 10.97~\mathrm{Gyr} and a likely minimum age for GW170817’s source system of 2.8~\mathrm{Gyr}. They use h = 0.7.

Troja et al. (2017) find a stellar mass of \log(M_\ast/M_\odot) \sim 10.88, and suggest an old stellar population of age > 2~\mathrm{Gyr}.

Ebrová & Bílek (2018) assume a distance of 41.0~\mathrm{kpc} and find a halo mass of 1.939 \times 10^{12} M_\odot. They suggest that NGC 4993 swallowed a smaller late-type galaxy somewhere between 0.2~\mathrm{Gyr} and 1~\mathrm{Gyr} ago, most probably around 0.4~\mathrm{Gyr} ago.

The consensus seems to be that the stellar population is old (and not much else). Fortunately, the conclusions of the GW170817 Progenitor Paper are pretty robust for delay times longer than 1~\mathrm{Gyr} as seems likely.

A couple of other papers look at the distance of the galaxy:

The values are consistent with our gravitational-wave estimates.

The remnant’s fate

We cannot be certain what happened to the merger remnant from gravitational-wave observations alone. However, electromagnetic observations do give some hints here.

Evans et al. (2017) argue that their non-detection of X-rays when observing with Swift and NuSTAR indicates that there is no neutron star remnant at this point, meaning we must have collapsed to form a black hole by 0.6 days post-merger. This isn’t too restricting in terms of the different ways the remnant could collapse, but does exclude a stable neutron star remnant. MAXI also didn’t detect any X-rays 4.6 hours after the merger (Sugita et al. 2018).

Pooley, Kumar & Wheeler (2017) consider X-ray observations of the afterglow. They calculate that if the remnant was a hypermassive neutron star with a large magnetic field, the early (10 day post-merger) luminosity would be much higher (and we could expect to see magnetar outbursts). Therefore, they think it is more likely that the remnant is a black hole.

Kasen et al. (2017) use the observed red component of the kilonova to argue that the remnant must have collapsed to a black hole in < 10~\mathrm{ms}. A neutron star would irradiate the ejecta with neutrinos, lower the neutron fraction and making the ejecta bluer. Since it is red, the neutrino flux must have been shut off, and the neutron star must have collapsed. We are in case b in their figure below.

Kilonova ejecta compoents

Cartoon of the different components of matter ejected from neutron star mergers. Red colours show heavy r-process elements and blue colours light r-process elements. There is a tidal tail of material forming a torus in the orbital plane, roughly spherical winds from the accretion disk, and material squeezed into the polar reasons during the collision. In case a, we have a long-lived neutron star, and its neutrino irradiation leads to blue ejecta. In case b the neutron star collapses, cutting off the neutrino flux. In case c, there is a neutron star–black hole merger, and we don’t have the polar material from the collision. Figure 1 of Kasen et al. (2017); also see Figure 1 of Margalit & Metzger (2017).

Ai et al. (2018) find that there are some corners of parameter space for certain equations of state where a long-lived neutron star is possible, even given the observations. Therefore, we should remain open minded.

Margalit & Metzger (2017) and Bauswein et al. (2017) note that the relatively large amount of ejecta inferred from observations [citation note] is easier to explain when there is delayed (on timescales of > 10~\mathrm{ms}). This is difficult to resolve unless neutron star radii are small (\lesssim 11~\mathrm{km}). Metzger, Thompson & Quataert (2018) derive how this tension could be resolved if the remnant was a rapidly spinning magnetar with a life time of 0.11~\mathrm{s}Matsumoto et al. (2018), suggest that the optical emission is powered by the the jet and material accreting onto the central object, rather than r-process decay, and this permits much smaller amounts of ejecta, which could also solve the issue. Yu & Dai (2017) suggest that accretion onto a long-lived neutron star could power the emission, and would only require a single opacity for the ejecta. Li et al. (2018) put forward a similar theory, arguing that both the high ejecta mass and low opacity are problems for the standard r-process explanation, but fallback onto a neutron star could work. However, Margutti et al. (2018) say that X-ray emission powered by a central engine is disfavoured at all times.

In conclusion, it seems that we ended up with a black hole, and we had an a unstable neutron star for a short time after merger, but I don’t think it’s yet settled how long this was around.

Neutron star equation of state

Several papers have explored what we can deduce about the nature of neutron star stuff™ from gravitational wave or electromagnetic observations the neutron star coalescence. It is quite a tricky problem. Below are some investigations into the radii of neutron stars and their tidal deformations; these seem compatible with the radii inferred in the GW170817 Equation-of-state Paper.

Bauswein et al. (2017) argue that the amount of ejecta inferred from the kilonova is too large for there to have been a prompt collapse to a black hole [citation note]. Using this, they estimate that the radius of a non-rotating neutron star of mass 1.6~\mathrm{M_\odot} has a radius of at least 10.68_{-0.04}^{+0.15}~\mathrm{km}. They also estimate that the radius for the maximum mass nonrotating neutron star must be greater than 9.60_{-0.03}^{+0.14}~\mathrm{km}.

Annala et al. (2018) combine our initial measurement of the tidal deformation, with the requirement hat the equation of state supports a 2 M_\odot neutron star (which they argue requires that the tidal deformation of a 1.4 M_\odot neutron star is at least 120). They argue that the latter condition implies that the radius of a 1.4 M_\odot neutron star is at least 9.9~\mathrm{km} and the former that it is less than 13.6~\mathrm{km}.

Radice et al. (2018) combine together observations of the kilonova (the amount of ejecta inferred) with gravitational-wave measurements of the masses to place constraints on the tidal deformation. From their simulations, they argue that to explain the ejecta, the combined dimensionless tidal deformability must be \tilde{\Lambda} > 400. This is consistent with results in the GW170817 Properties Paper, but would eliminate the main peak of the distribution we inferred from gravitational waves alone.

Lim & Holt (2018) perform some equation-of-state calculations. They find that their particular method (chiral effective theory) is already in good agreement with estimates of the maximum neutron star mass and tidal deformations. Which is nice. Using their models, they predict that for GW170817’s chirp mass \tilde{\Lambda} = 532^{+106}_{-119}.

Raithel, Özel & Psaltis (2018) argue that for a given chirp mass,\tilde{\Lambda} is only a weak function of component masses, and depends mostly on the radii. Therefore, from our initial inferred value, they put a 90% upper limit on the radii of 13~\mathrm{km}.

Most et al. (2018) consider a wide range of parametrised equations of state. They consider both hadronic (made up of particles like neutrons and protons) equation of states, and ones where they undergo phase transitions (with hadrons breaking into quarks), which could potentially mean that the two neutron stars have quite different properties. A number of different constraints are imposed, to give a selection of potential radius ranges. Combining the requirement that neutron stars can be up to 20.1 M_\odot (Antoniadis et al. 2013), the maximum neutron star mass of 2.17 M_\odot inferred by Margalit & Metzger (2017), our initial gravitational-wave upper limit on the tidal deformation and the lower limit from Radice et al. (2018), they estimate that the radius of a 1.4 M_\odot neutron star is 12.0013.45~\mathrm{km} for the hadronic equation of state. For the equation of state with the phase transition, they do the same, but without the tidal deformation from Radice et al. (2018), and find the radius of a 1.4 M_\odot neutron star is 8.5313.74~\mathrm{km}.

Paschalidis et al. (2018) consider in more detail the idea equations of state with hadron–quark phase transitions, and the possibility that one of the components of GW170817’s source was a hadron–quark hybrid star. They find that the initial tidal measurements are consistent with this.

Burgio et al. (2018) further explore the possibility that the two binary components have different properties. They consider both there being a hadron–quark phase transition, and also that one star is hardonic and the other is a quark star (made up of deconfined quarks, rather than ones packaged up inside hadrons). X-ray observations indicate that neutron stars have radii in the range 9.911.2~\mathrm{km}, whereas most of the radii inferred for GW170817’s components are larger. This paper argues that this can be resolved if one of the components of GW170817’s source was a hadron–quark hybrid star or a quark star.

De et al. (2018) perform their own analysis of the gravitational signal, with a variety of different priors on the component masses. They assume that the two neutron stars have the same radii. In the GW170817 Equation-of-state Paper we find that the difference can be up to about 2~\mathrm{km}, which I think makes this an OKish approximation; Zhao & Lattimer (2018) look at this in more detail. Within their approximation, they estimate the neutron stars to have a common radius of 8.913.2~\mathrm{km}.

Malik et al. (2018) use the initial gravitational-wave upper bound on tidal deformation and the lower bound from Radice et al. (2018) in combination with several equations of state (calculated using relativistic mean field and of Skyrme Hartree–Fock recipes, which sound delicious). For a 1.4 M_\odot neutron star, they obtain a tidal defomation in the range 344859 and the radius in the range 11.8213.72~\mathrm{km}.

Advertisements

GW170814—Enter Virgo

On 14 August 2017 a gravitational wave signal (GW170814), originating from the coalescence of a binary black hole system, was observed by the global gravitational-wave observatory network of the two Advanced LIGO detectors and Advanced Virgo.  That’s right, Virgo is in the game!

A new foe appeared

Very few things excite me like unlocking a new character in Smash Bros. A new gravitational wave observatory might come close.

Advanced Virgo joined O2, the second observing run of the advanced detector era, on 1 August. This was a huge achievement. It has not been an easy route commissioning the new detector—it never ceases to amaze me how sensitive these machines are. Together, Advanced Virgo (near Pisa) and the two Advanced LIGO detectors (in Livingston and Hanford in the US) would take data until the end of O2 on 25 August.

On 14 August, we found a signal. A signal that was observable in all three detectors [bonus note]. Virgo is less sensitive than the LIGO instruments, so there is no impressive plot that shows something clearly popping out, but the Virgo data do complement the LIGO observations, indicating a consistent signal in all three detectors [bonus note].

Three different ways of visualising GW170814: an SNR time series, a spectrogram and a waveform reconstruction

A cartoon of three different ways to visualise GW170814 in the three detectors. These take a bit of explaining. The top panel shows the signal-to-noise ratio the search template that matched GW170814. They peak at the time corresponding to the merger. The peaks are clear in Hanford and Livingston. The peak in Virgo is less exceptional, but it matches the expected time delay and amplitude for the signal. The middle panels show time–frequency plots. The upward sweeping chirp is visible in Hanford and Livingston, but less so in Virgo as it is less sensitive. The plot is zoomed in so that its possible to pick out the detail in Virgo, but the chirp is visible for a longer stretch of time than plotted in Livingston. The bottom panel shows whitened and band-passed strain data, together with the 90% region of the binary black hole templates used to infer the parameters of the source (the narrow dark band), and an unmodelled, coherent reconstruction of the signal (the wider light band) . The agreement between the templates and the reconstruction is a check that the gravitational waves match our expectations for binary black holes. The whitening of the data mirrors how we do the analysis, by weighting noise at different frequency by an estimate of their typical fluctuations. The signal does certainly look like the inspiral, merger and ringdown of a binary black hole. Figure 1 of the GW170814 Paper.

The signal originated from the coalescence of two black holes. GW170814 is thus added to the growing family of GW150914, LVT151012, GW151226 and GW170104.

GW170814 most closely resembles GW150914 and GW170104 (perhaps there’s something about ending with a 4). If we compare the masses of the two component black holes of the binary (m_1 and m_2), and the black hole they merge to form (M_\mathrm{f}), they are all quite similar

  • GW150914: m_1 = 36.2^{+5.2}_{-3.8} M_\odot, m_2 = 29.1^{+3.7}_{-4.4} M_\odot, M_\mathrm{f} = 62.3^{+3.7}_{-3.1} M_\odot;
  • GW170104: m_1 = 31.2^{+5.4}_{-6.0} M_\odot, m_2 = 19.4^{+5.3}_{-5.9} M_\odot, M_\mathrm{f} = 48.7^{+5.7}_{-4.6} M_\odot;
  • GW170814: m_1 = 30.5^{+5.7}_{-3.0} M_\odot, m_2 = 25.3^{+2.8}_{-4.2} M_\odot, M_\mathrm{f} = 53.2^{+3.2}_{-2.5} M_\odot.

GW170814’s source is another high-mass black hole system. It’s not too surprising (now we know that these systems exist) that we observe lots of these, as more massive black holes produce louder gravitational wave signals.

GW170814 is also comparable in terms of black holes spins. Spins are more difficult to measure than masses, so we’ll just look at the effective inspiral spin \chi_\mathrm{eff}, a particular combination of the two component spins that influences how they inspiral together, and the spin of the final black hole a_\mathrm{f}

  • GW150914: \chi_\mathrm{eff} = -0.06^{+0.14}_{-0.14}, a_\mathrm{f} = 0.70^{+0.07}_{-0.05};
  • GW170104:\chi_\mathrm{eff} = -0.12^{+0.21}_{-0.30}, a_\mathrm{f} = 0.64^{+0.09}_{-0.20};
  • GW170814:\chi_\mathrm{eff} = 0.06^{+0.12}_{-0.12}, a_\mathrm{f} = 0.70^{+0.07}_{-0.05}.

There’s some spread, but the effective inspiral spins are all consistent with being close to zero. Small values occur when the individual spins are small, if the spins are misaligned with each other, or some combination of the two. I’m starting to ponder if high-mass black holes might have small spins. We don’t have enough information to tease these apart yet, but this new system is consistent with the story so far.

One of the things Virgo helps a lot with is localizing the source on the sky. Most of the information about the source location comes from the difference in arrival times at the detectors (since we know that gravitational waves should travel at the speed of light). With two detectors, the time delay constrains the source to a ring on the sky; with three detectors, time delays can narrow the possible locations down to a couple of blobs. Folding in the amplitude of the signal as measured by the different detectors adds extra information, since detectors are not equally sensitive to all points on the sky (they are most sensitive to sources over head or underneath). This can even help when you don’t observe the signal in all detectors, as you know the source must be in a direction that detector isn’t too sensitive too. GW170814 arrived at LIGO Livingston first (although it’s not a competition), then ~8 ms later at LIGO Hanford, and finally ~14 ms later at Virgo.  If we only had the two LIGO detectors, we’d have an uncertainty on the source’s sky position of over 1000 square degrees, but adding in Virgo, we get this down to 60 square degrees. That’s still pretty large by astronomical standards (the full Moon is about a quarter of a square degree), but a fantastic improvement [bonus note]!

Sky localization of GW170814

90% probability localizations for GW170814. The large banana shaped (and banana coloured, but not banana flavoured) curve uses just the two LIGO detectors, the area is 1160 square degrees. The green shows the improvement adding Virgo, the area is just 100 square degrees. Both of these are calculated using BAYESTAR, a rapid localization algorithm. The purple map is the final localization from our full parameter estimation analysis (LALInference), its area is just 60 square degrees! Whereas BAYESTAR only uses the best matching template from the search, the full parameter estimation analysis is free to explore a range of different templates. Part of Figure 3 of the GW170814 Paper.

Having additional detectors can help improve gravitational wave measurements in other ways too. One of the predictions of general relativity is that gravitational waves come in two polarizations. These polarizations describe the pattern of stretching and squashing as the wave passes, and are illustrated below.

Plus and cross polarizations

The two polarizations of gravitational waves: plus (left) and cross (right). Here, the wave is travelling into or out of the screen. Animations adapted from those by MOBle on Wikipedia.

These two polarizations are the two tensor polarizations, but other patterns of squeezing could be present in modified theories of gravity. If we could detect any of these we would immediately know that general relativity is wrong. The two LIGO detectors are almost exactly aligned, so its difficult to get any information on other polarizations. (We tried with GW150914 and couldn’t say anything either way). With Virgo, we get a little more information. As a first illustration of what we may be able to do, we compared how well the observed pattern of radiation at the detectors matched different polarizations, to see how general relativity’s tensor polarizations compared to a signal of entirely vector or scalar radiation. The tensor polarizations are clearly preferred, so general relativity lives another day. This isn’t too surprising, as most modified theories of gravity with other polarizations predict mixtures of the different polarizations (rather than all of one). To be able to constrain all the  mixtures with these short signals we really need a network of five detectors, so we’ll have to wait for KAGRA and LIGO-India to come on-line.

The siz gravitational wave polarizations

The six polarizations of a metric theory of gravity. The wave is travelling in the z direction. (a) and (b) are the plus and cross tensor polarizations of general relativity. (c) and (d) are the scalar breathing and longitudinal modes, and (e) and (f) are the vector x and y polarizations. The tensor polarizations (in red) are transverse, the vector and longitudinal scalar mode (in green) are longitudinal. The scalar breathing mode (in blue) is an isotropic expansion and contraction, so its a bit of a mix of transverse and longitudinal. Figure 10 from (the excellent) Will (2014).

We’ll be presenting a more detailed analysis of GW170814 later, in papers summarising our O2 results, so stay tuned for more.

Title: GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence
arXiv: 1709.09660 [gr-qc]
Journal: Physical Review Letters; 119(14):141101(16) [bonus note]
Data release: LIGO Open Science Center
Science summary: GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence

Bonus notes

Signs of paranoia

Those of you who have been following the story of gravitational waves for a while may remember the case of the Big Dog. This was a blind injection of a signal during the initial detector era. One of the things that made it an interesting signal to analyse, was that it had been injected with an inconsistent sign in Virgo compared to the two LIGO instruments (basically it was upside down). Making this type of sign error is easy, and we were a little worried that we might make this sort of mistake when analysing the real data. The Virgo calibration team were extremely careful about this, and confident in their results. Of course, we’re quite paranoid, so during the preliminary analysis of GW170814, we tried some parameter estimation runs with the data from Virgo flipped. This was clearly disfavoured compared to the right sign, so we all breathed easily.

I am starting to believe that God may be a detector commissioner. At the start of O1, we didn’t have the hardware injection systems operational, but GW150914 showed that things were working properly. Now, with a third detector on-line, GW170814 shows that the network is functioning properly. Astrophysical injections are definitely the best way to confirm things are working!

Signal hunting

Our usual way to search for binary black hole signals is compare the data to a bank of waveform templates. Since Virgo is less sensitive the the two LIGO detectors, and would only be running for a short amount of time, these main searches weren’t extended to use data from all three detectors. This seemed like a sensible plan, we were confident that this wouldn’t cause us to miss anything, and we can detect GW170814 with high significance using just data from Livingston and Hanford—the false alarm rate is estimated to be less than 1 in 27000 years (meaning that if the detectors were left running in the same state, we’d expect random noise to make something this signal-like less than once every 27000 years). However, we realised that we wanted to be able to show that Virgo had indeed seen something, and the search wasn’t set up for this.

Therefore, for the paper, we list three different checks to show that Virgo did indeed see the signal.

  1. In a similar spirit to the main searches, we took the best fitting template (it doesn’t matter in terms of results if this is the best matching template found by the search algorithms, or the maximum likelihood waveform from parameter estimation), and compared this to a stretch of data. We then calculated the probability of seeing a peak in the signal-to-noise ratio (as shown in the top row of Figure 1) at least as large as identified for GW170814, within the time window expected for a real signal. Little blips of noise can cause peaks in the signal-to-noise ratio, for example, there’s a glitch about 50 ms after GW170814 which shows up. We find that there’s a 0.3% probability of getting a signal-to-ratio peak as large as GW170814. That’s pretty solid evidence for Virgo having seen the signal, but perhaps not overwhelming.
  2. Binary black hole coalescences can also be detected (if the signals are short) by our searches for unmodelled signals. This was the case for GW170814. These searches were using data from all three detectors, so we can compare results with and without Virgo. Using just the two LIGO detectors, we calculate a false alarm rate of 1 per 300 years. This is good enough to claim a detection. Adding in Virgo, the false alarm rate drops to 1 per 5900 years! We see adding in Virgo improves the significance by almost a factor of 20.
  3. Using our parameter estimation analysis, we calculate the evidence (marginal likelihood) for (i) there being a coherent signal in Livingston and Hanford, and Gaussian noise in Virgo, and (ii) there being a coherent signal in all three detectors. We then take the ratio to calculate the Bayes factor. We find that a coherent signal in all three detectors is preferred by a factor of over 1600. This is a variant of a test proposed in Veitch & Vecchio (2010); it could be fooled if the noise in Virgo is non-Gaussian (if there is a glitch), but together with the above we think that the simplest explanation for Virgo’s data is that there is a signal.

In conclusion: Virgo works. Probably.

Follow-up observations

Adding Virgo to the network greatly improves localization of the source, which is a huge advantage when searching for counterparts. For a binary black hole, as we have here, we don’t expect a counterpart (which would make finding one even more exciting). So far, no counterpart has been reported.

Announcement

This is the first observation we’ve announced before being published. The draft made public at time at announcement was accepted, pending fixing up some minor points raised by the referees (who were fantastically quick in reporting back). I guess that binary black holes are now familiar enough that we are on solid ground claiming them. I’d be interested to know if people think that it would be good if we didn’t always wait for the rubber stamp of peer review, or whether they would prefer to for detections to be externally vetted? Sharing papers before publication would mean that we get more chance for feedback from the community, which is would be good, but perhaps the Collaboration should be seen to do things properly?

One reason that the draft paper is being shared early is because of an opportunity to present to the G7 Science Ministers Meeting in Italy. I think any excuse to remind politicians that international collaboration is a good thing™ is worth taking. Although I would have liked the paper to be a little more polished [bonus advice]. The opportunity to present here only popped up recently, which is one reason why things aren’t as perfect as usual.

I also suspect that Virgo were keen to demonstrate that they had detected something prior to any Nobel Prize announcement. There’s a big difference between stories being written about LIGO and Virgo’s discoveries, and having as an afterthought that Virgo also ran in August.

The main reason, however, was to get this paper out before the announcement of GW170817. The identification of GW170817’s counterpart relied on us being able to localize the source. In that case, there wasn’t a clear signal in Virgo (the lack of a signal tells us the source wan’t in a direction wasn’t particularly sensitive to). People agreed that we really need to demonstrate that Virgo can detect gravitational waves in order to be convincing that not seeing a signal is useful information. We needed to demonstrate that Virgo does work so that our case for GW170817 was watertight and bulletproof (it’s important to be prepared).

Perfect advice

Some useful advice I was given when a PhD student was that done is better than perfect. Having something finished is often more valuable than having lots of really polished bits that don’t fit together to make a cohesive whole, and having everything absolutely perfect takes forever. This is useful to remember when writing up a thesis. I think it might apply here too: the Paper Writing Team have done a truly heroic job in getting something this advanced in little over a month. There’s always one more thing to do… [one more bonus note]

One more thing

One point I was hoping that the Paper Writing Team would clarify is our choice of prior probability distribution for the black hole spins. We don’t get a lot of information about the spins from the signal, so our choice of prior has an impact on the results.

The paper says that we assume “no restrictions on the spin orientations”, which doesn’t make much sense, as one of the two waveforms we use to analyse the signal only includes spins aligned with the orbital angular momentum! What the paper meant was that we assume a prior distribution which has an isotopic distribution of spins, and for the aligned spin (no precession) waveform, we assume a prior probability distribution on the aligned components of the spins which matches what you would have for an isotropic distribution of spins (in effect, assuming that we can only measure the aligned components of the spins, which is a good approximation).

GW170104 and me

On 4 January 2017, Advanced LIGO made a new detection of gravitational waves. The signal, which we call GW170104 [bonus note], came from the coalescence of two black holes, which inspiralled together (making that characteristic chirp) and then merged to form a single black hole.

On 4 January 2017, I was just getting up off the sofa when my phone buzzed. My new year’s resolution was to go for a walk every day, and I wanted to make use of the little available sunlight. However, my phone informed me that PyCBC (one or our search algorithms for signals from coalescing binaries) had identified an interesting event. I sat back down. I was on the rota to analyse interesting signals to infer their properties, and I was pretty sure that people would be eager to see results. They were. I didn’t leave the sofa for the rest of the day, bringing my new year’s resolution to a premature end.

Since 4 January, my time has been dominated by working on GW170104 (you might have noticed a lack of blog posts). Below I’ll share some of my war stories from life on the front line of gravitational-wave astronomy, and then go through some of the science we’ve learnt. (Feel free to skip straight to the science, recounting the story was more therapy for me).

Normalised spectrograms for GW170104

Time–frequency plots for GW170104 as measured by Hanford (top) and Livingston (bottom). The signal is clearly visible as the upward sweeping chirp. The loudest frequency is something between E3 and G♯3 on a piano, and it tail off somewhere between D♯4/E♭4 and F♯4/G♭4. Part of Fig. 1 of the GW170104 Discovery Paper.

The story

In the second observing run, the Parameter Estimation group have divided up responsibility for analysing signals into two week shifts. For each rota shift, there is an expert and a rookie. I had assumed that the first slot of 2017 would be a quiet time. The detectors were offline over the holidays, due back online on 4 January, but the instrumentalists would probably find some extra tinkering they’d want to do, so it’d probably slip a day, and then the weather would be bad, so we’d probably not collect much data anyway… I was wrong. Very wrong. The detectors came back online on time, and there was a beautifully clean detection on day one.

My partner for the rota was Aaron Zimmerman. 4 January was his first day running parameter estimation on live signals. I think I would’ve run and hidden underneath my duvet in his case (I almost did anyway, and I lived through the madness of our first detection GW150914), but he rose to the occasion. We had first results after just a few hours, and managed to send out a preliminary sky localization to our astronomer partners on 6 January. I think this was especially impressive as there were some difficulties with the initial calibration of the data. This isn’t a problem for the detection pipelines, but does impact the parameters which we infer, particularly the sky location. The Calibration group worked quickly, and produced two updates to the calibration. We therefore had three different sets of results (one per calibration) by 6 January [bonus note]!

Producing the final results for the paper was slightly more relaxed. Aaron and I conscripted volunteers to help run all the various permutations of the analysis we wanted to double-check our results [bonus note].

Estimated waveforms from different models for GW170104

Recovered gravitational waveforms from analysis of GW170104. The broader orange band shows our estimate for the waveform without assuming a particular source (wavelet). The narrow blue bands show results if we assume it is a binary black hole (BBH) as predicted by general relativity. The two match nicely, showing no evidence for any extra features not included in the binary black hole models. Figure 4 of the GW170104 Discovery Paper.

I started working on GW170104 through my parameter estimation duties, and continued with paper writing.

Ahead of the second observing run, we decided to assemble a team to rapidly write up any interesting binary detections, and I was recruited for this (I think partially because I’m not too bad at writing and partially because I was in the office next to John Veitch, one of the chairs of the Compact Binary Coalescence group,so he can come and check that I wasn’t just goofing off eating doughnuts). We soon decided that we should write a paper about GW170104, and you can decide whether or not we succeeded in doing this rapidly…

Being on the paper writing team has given me huge respect for the teams who led the GW150914 and GW151226 papers. It is undoubtedly one of the most difficult things I’ve ever done. It is extremely hard to absorb negative remarks about your work continuously for months [bonus note]—of course people don’t normally send comments about things that they like, but that doesn’t cheer you up when you’re staring at an inbox full of problems that need fixing. Getting a collaboration of 1000 people to agree on a paper is like herding cats while being a small duckling.

On of the first challenges for the paper writing team was deciding what was interesting about GW170104. It was another binary black hole coalescence—aren’t people getting bored of them by now? The signal was quieter than GW150914, so it wasn’t as remarkable. However, its properties were broadly similar. It was suggested that perhaps we should title the paper “GW170104: The most boring gravitational-wave detection”.

One potentially interesting aspect was that GW170104 probably comes from greater distance than GW150914 or GW151226 (but perhaps not LVT151012) [bonus note]. This might make it a good candidate for testing for dispersion of gravitational waves.

Dispersion occurs when different frequencies of gravitational waves travel at different speeds. A similar thing happens for light when travelling through some materials, which leads to prisms splitting light into a spectrum (and hence the creation of Pink Floyd album covers). Gravitational waves don’t suffered dispersion in general relativity, but do in some modified theories of gravity.

It should be easier to spot dispersion in signals which have travelled a greater distance, as the different frequencies have had more time to separate out. Hence, GW170104 looks pretty exciting. However, being further away also makes the signal quieter, and so there is more uncertainty in measurements and it is more difficult to tell if there is any dispersion. Dispersion is also easier to spot if you have a larger spread of frequencies, as then there can be more spreading between the highest and lowest frequencies. When you throw distance, loudness and frequency range into the mix, GW170104 doesn’t always come out on top, depending upon the particular model for dispersion: sometimes GW150914’s loudness wins, other times GW151226’s broader frequency range wins. GW170104 isn’t too special here either.

Even though GW170104 didn’t look too exciting, we started work on a paper, thinking that we would just have a short letter describing our observations. The Compact Binary Coalescence group decided that we only wanted a single paper, and we wouldn’t bother with companion papers as we did for GW150914. As we started work, and dug further into our results, we realised that actually there was rather a lot that we could say.

I guess the moral of the story is that even though you might be overshadowed by the achievements of your siblings, it doesn’t mean that you’re not awesome. There might not be one outstanding feature of GW170104, but there are lots of little things that make it interesting. We are still at the beginning of understanding the properties of binary black holes, and each new detection adds a little more to our picture.

I think GW170104 is rather neat, and I hope you do too.

As we delved into the details of our results, we realised there was actually a lot of things that we could say about GW170104, especially when considered with our previous observations. We ended up having to move some of the technical details and results to Supplemental Material. With hindsight, perhaps it would have been better to have a companion paper or two. However, I rather like how packed with science this paper is.

The paper, which Physical Review Letters have kindly accommodated, despite its length, might not be as polished a classic as the GW150914 Discovery Paper, but I think they are trying to do different things. I rarely ever refer to the GW150914 Discovery Paper for results (more commonly I use it for references), whereas I think I’ll open up the GW170104 Discovery Paper frequently to look up numbers.

Although perhaps not right away, I’d quite like some time off first. The weather’s much better now, perfect for walking…

Looking east across Lake Annecy, France

Success! The view across Lac d’Annecy. Taken on a stroll after the Gravitational Wave Physics and Astronomy Workshop, the weekend following the publication of the paper.

The science

Advanced LIGO’s first observing run was hugely successful. Running from 12 September 2015 until 19 January 2016, there were two clear gravitational-wave detections, GW1501914 and GW151226, as well as a less certain candidate signal LVT151012. All three (assuming that they are astrophysical signals) correspond to the coalescence of binary black holes.

The second observing run started 30 November 2016. Following the first observing run’s detections, we expected more binary black hole detections. On 4 January, after we had collected almost 6 days’ worth of coincident data from the two LIGO instruments [bonus note], there was a detection.

The searches

The signal was first spotted by an online analysis. Our offline analysis of the data (using refined calibration and extra information about data quality) showed that the signal, GW170104, is highly significant. For both GstLAL and PyCBC, search algorithms which use templates to search for binary signals, the false alarm rate is estimated to be about 1 per 70,000 years.

The signal is also found in unmodelled (burst) searches, which look for generic, short gravitational wave signals. Since these are looking for more general signals than just binary coalescences, the significance associated with GW170104 isn’t as great, and coherent WaveBurst estimates a false alarm rate of 1 per 20,000 years. This is still pretty good! Reconstructions of the waveform from unmodelled analyses also match the form expected for binary black hole signals.

The search false alarm rates are the rate at which you’d expect something this signal-like (or more signal-like) due to random chance, if you data only contained noise and no signals. Using our knowledge of the search pipelines, and folding in some assumptions about the properties of binary black holes, we can calculate a probability that GW170104 is a real astrophysical signal. This comes out to be greater than 1 - (3\times10^5) = 0.99997.

The source

As for the previous gravitational wave detections, GW170104 comes from a binary black hole coalescence. The initial black holes were 31.2^{+8.4}_{-6.0} M_\odot and 19.4^{+5.3}_{-5.9} M_\odot (where 1 M_\odot is the mass of our Sun), and the final black hole was 48.7^{+5.7}_{-4.6} M_\odot. The quoted values are the median values and the error bars denote the central 90% probable range. The plot below shows the probability distribution for the masses; GW170104 neatly nestles in amongst the other events.

Binary black hole masses

Estimated masses for the two black holes in the binary m_1 \geq m_2. The two-dimensional shows the probability distribution for GW170104 as well as 50% and 90% contours for all events. The one-dimensional plot shows results using different waveform models. The dotted lines mark the edge of our 90% probability intervals. Figure 2 of the GW170104 Discovery Paper.

GW150914 was the first time that we had observed stellar-mass black holes with masses greater than around 25 M_\odot. GW170104 has similar masses, showing that our first detection was not a fluke, but there really is a population of black holes with masses stretching up into this range.

Black holes have two important properties: mass and spin. We have good measurements on the masses of the two initial black holes, but not the spins. The sensitivity of the form of the gravitational wave to spins can be described by two effective spin parameters, which are mass-weighted combinations of the individual spins.

  • The effective inspiral spin parameter \chi_\mathrm{eff} qualifies the impact of the spins on the rate of inspiral, and where the binary plunges together to merge. It ranges from +1, meaning both black holes are spinning as fast as possible and rotate in the same direction as the orbital motion, to −1, both black holes spinning as fast as possible but in the opposite direction to the way that the binary is orbiting. A value of 0 for \chi_\mathrm{eff} could mean that the black holes are not spinning, that their rotation axes are in the orbital plane (instead of aligned with the orbital angular momentum), or that one black hole is aligned with the orbital motion and the other is antialigned, so that their effects cancel out.
  • The effective precession spin parameter \chi_\mathrm{p} qualifies the amount of precession, the way that the orbital plane and black hole spins wobble when they are not aligned. It is 0 for no precession, and 1 for maximal precession.

We can place some constraints on \chi_\mathrm{eff}, but can say nothing about \chi_\mathrm{p}. The inferred value of the effective inspiral spin parameter is -0.12^{+0.21}_{-0.30}. Therefore, we disfavour large spins aligned with the orbital angular momentum, but are consistent with small aligned spins, misaligned spins, or spins antialigned with the angular momentum. The value is similar to that for GW150914, which also had a near-zero, but slightly negative \chi_\mathrm{eff} of -0.06^{+0.14}_{-0.14}.

Effective inspiral and precession spin parameters

Estimated effective inspiral spin parameter \chi_\mathrm{eff} and effective precession spin \chi_\mathrm{p} parameter. The two-dimensional shows the probability distribution for GW170104 as well as 50% and 90% contours. The one-dimensional plot shows results using different waveform models, as well as the prior probability distribution. The dotted lines mark the edge of our 90% probability intervals. We learn basically nothing about precession. Part of Figure 3 of the GW170104 Discovery Paper.

Converting the information about \chi_\mathrm{eff}, the lack of information about \chi_\mathrm{p}, and our measurement of the ratio of the two black hole masses, into probability distributions for the component spins gives the plots below [bonus note]. We disfavour (but don’t exclude) spins aligned with the orbital angular momentum, but can’t say much else.

Orientation and magnitudes of the two spins

Estimated orientation and magnitude of the two component spins. The distribution for the more massive black hole is on the left, and for the smaller black hole on the right. The probability is binned into areas which have uniform prior probabilities, so if we had learnt nothing, the plot would be uniform. Part of Figure 3 of the GW170104 Discovery Paper.

One of the comments we had on a draft of the paper was that we weren’t making any definite statements about the spins—we would have if we could, but we can’t for GW170104, at least for the spins of the two inspiralling black holes. We can be more definite about the spin of the final black hole. If two similar mass black holes spiral together, the angular momentum from the orbit is enough to give a spin of around 0.7. The spins of the component black holes are less significant, and can make it a bit higher of lower. We infer a final spin of 0.64^{+0.09}_{-0.20}; there is a tail of lower spin values on account of the possibility that the two component black holes could be roughly antialigned with the orbital angular momentum.

Final black hole mass and spin

Estimated mass M_\mathrm{f} and spina_\mathrm{f} for the final black hole. The two-dimensional shows the probability distribution for GW170104 as well as 50% and 90% contours. The one-dimensional plot shows results using different waveform models. The dotted lines mark the edge of our 90% probability intervals. Figure 6 of the GW170104 Supplemental Material (Figure 11 of the arXiv version).

If you’re interested in parameter describing GW170104, make sure to check out the big table in the Supplemental Material. I am a fan of tables [bonus note].

Merger rates

Adding the first 11 days of coincident data from the second observing run (including the detection of GW170104) to the results from the first observing run, we find merger rates consistent with those from the first observing run.

To calculate the merger rates, we need to assume a distribution of black hole masses, and we use two simple models. One uses a power law distribution for the primary (larger) black hole and a uniform distribution for the mass ratio; the other uses a distribution uniform in the logarithm of the masses (both primary and secondary). The true distribution should lie somewhere between the two. The power law rate density has been updated from 31^{+42}_{-21}\mathrm{Gpc^{-3}\,yr^{-1}} to 32^{+33}_{-20}\mathrm{Gpc^{-3}\,yr^{-1}}, and the uniform in log rate density goes from 97^{+135}_{-67}~\mathrm{Gpc^{-3}\,yr^{-1}} to 103^{+110}_{-63}~\mathrm{Gpc^{-3}\,yr^{-1}}. The median values stay about the same, but the additional data have shrunk the uncertainties a little.

Astrophysics

The discoveries from the first observing run showed that binary black holes exist and merge. The question is now how exactly they form? There are several suggested channels, and it could be there is actually a mixture of different formation mechanisms in action. It will probably require a large number of detections before we can make confident statements about the the probable formation mechanisms; GW170104 is another step towards that goal.

There are two main predicted channels of binary formation:

  • Isolated binary evolution, where a binary star system lives its life together with both stars collapsing to black holes at the end. To get the black holes close enough to merge, it is usually assumed that the stars go through a common envelope phase, where one star puffs up so that the gravity of its companion can steal enough material that they lie in a shared envelope. The drag from orbiting inside this then shrinks the orbit.
  • Dynamical evolution where black holes form in dense clusters and a binary is created by dynamical interactions between black holes (or stars) which get close enough to each other.

It’s a little artificial to separate the two, as there’s not really such a thing as an isolated binary: most stars form in clusters, even if they’re not particularly large. There are a variety of different modifications to the two main channels, such as having a third companion which drives the inner binary to merge, embedding the binary is a dense disc (as found in galactic centres), or dynamically assembling primordial black holes (formed by density perturbations in the early universe) instead of black holes formed through stellar collapse.

All the channels can predict black holes around the masses of GW170104 (which is not surprising given that they are similar to the masses of GW150914).

The updated rates are broadly consistent with most channels too. The tightening of the uncertainty of the rates means that the lower bound is now a little higher. This means some of the channels are now in tension with the inferred rates. Some of the more exotic channels—requiring a third companion (Silsbee & Tremain 2017; Antonini, Toonen & Hamers 2017) or embedded in a dense disc (Bartos et al. 2016; Stone, Metzger & Haiman 2016; Antonini & Rasio 2016)—can’t explain the full rate, but I don’t think it was ever expected that they could, they are bonus formation mechanisms. However, some of the dynamical models are also now looking like they could predict a rate that is a bit low (Rodriguez et al. 2016; Mapelli 2016; Askar et al. 2017; Park et al. 2017). Assuming that this result holds, I think this may mean that some of the model parameters need tweaking (there are more optimistic predictions for the merger rates from clusters which are still perfectly consistent), that this channel doesn’t contribute all the merging binaries, or both.

The spins might help us understand formation mechanisms. Traditionally, it has been assumed that isolated binary evolution gives spins aligned with the orbital angular momentum. The progenitor stars were probably more or less aligned with the orbital angular momentum, and tides, mass transfer and drag from the common envelope would serve to realign spins if they became misaligned. Rodriguez et al. (2016) gives a great discussion of this. Dynamically formed binaries have no correlation between spin directions, and so we would expect an isotropic distribution of spins. Hence it sounds quite simple: misaligned spins indicates dynamical formation (although we can’t tell if the black holes are primordial or stellar), and aligned spins indicates isolated binary evolution. The difficulty is the traditional assumption for isolated binary evolution potentially ignores a number of effects which could be important. When a star collapses down to a black hole, there may be a supernova explosion. There is an explosion of matter and neutrinos and these can give the black hole a kick. The kick could change the orbital plane, and so misalign the spin. Even if the kick is not that big, if it is off-centre, it could torque the black hole, causing it to rotate and so misalign the spin that way. There is some evidence that this can happen with neutron stars, as one of the pulsars in the double pulsar system shows signs of this. There could also be some instability that changes the angular momentum during the collapse of the star, possibly with different layers rotating in different ways [bonus note]. The spin of the black hole would then depend on how many layers get swallowed. This is an area of research that needs to be investigated further, and I hope the prospect of gravitational wave measurements spurs this on.

For GW170104, we know the spins are not large and aligned with the orbital angular momentum. This might argue against one variation of isolated binary evolution, chemically homogeneous evolution, where the progenitor stars are tidally locked (and so rotate aligned with the orbital angular momentum and each other). Since the stars are rapidly spinning and aligned, you would expect the final black holes to be too, if the stars completely collapse down as is usually assumed. If the stars don’t completely collapse down though, it might still be possible that GW170104 fits with this model. Aside from this, GW170104 is consistent with all the other channels.

Effective inspiral spin parameters

Estimated effective inspiral spin parameter \chi_\mathrm{eff} for all events. To indicate how much (or little) we’ve learnt, the prior probability distribution for GW170104 is shown (the other priors are similar).All of the events have |\chi_\mathrm{eff}| < 0.35 at 90% probability. Figure 5 of the GW170104 Supplemental Material (Figure 10 of the arXiv version). This is one of my favourite plots [bonus note].

If we start looking at the population of events, we do start to notice something about the spins. All of the inferred values of \chi_\mathrm{eff} are close to zero. Only GW151226 is inconsistent with zero. These values could be explained if spins are typically misaligned (with the orbital angular momentum or each other) or if the spins are typically small (or both). We know that black holes spins can be large from observations of X-ray binaries, so it would be odd if they are small for binary black holes. Therefore, we have a tentative hint that spins are misaligned. We can’t say why the spins are misaligned, but it is intriguing. With more observations, we’ll be able to confirm if it is the case that spins are typically misaligned, and be able to start pinning down the distribution of spin magnitudes and orientations (as well as the mass distribution). It will probably take a while to be able to say anything definite though, as we’ll probably need about 100 detections.

Tests of general relativity

As well as giving us an insight into the properties of black holes, gravitational waves are the perfect tools for testing general relativity. If there are any corrections to general relativity, you’d expect them to be most noticeable under the most extreme conditions, where gravity is strong and spacetime is rapidly changing, exactly as in a binary black hole coalescence.

For GW170104 we repeated tests previously performed. Again, we found no evidence of deviations.

We added extra terms to to the waveform and constrained their potential magnitudes. The results are pretty much identical to at the end of the first observing run (consistent with zero and hence general relativity). GW170104 doesn’t add much extra information, as GW150914 typically gives the best constraints on terms that modify the post-inspiral part of the waveform (as it is louder), while GW151226 gives the best constraint on the terms which modify the inspiral (as it has the longest inspiral).

We also chopped the waveform at a frequency around that of the innermost stable orbit of the remnant black hole, which is about where the transition from inspiral to merger and ringdown occurs, to check if the low frequency and high frequency portions of the waveform give consistent estimates for the final mass and spin. They do.

We have also done something slightly new, and tested for dispersion of gravitational waves. We did something similar for GW150914 by putting a limit on the mass of the graviton. Giving the graviton mass is one way of adding dispersion, but we consider other possible forms too. In all cases, results are consistent with there being no dispersion. While we haven’t discovered anything new, we can update our gravitational wave constraint on the graviton mass of less than 7.7 \times 10^{-23}~\mathrm{eV}/c^2.

The search for counterparts

We don’t discuss observations made by our astronomer partners in the paper (they are not our results). A number (28 at the time of submission) of observations were made, and I expect that there will be a series of papers detailing these coming soon. So far papers have appeared from:

  • AGILE—hard X-ray and gamma-ray follow-up. They didn’t find any gamma-ray signals, but did identify a weak potential X-ray signal occurring about 0.46 s before GW170104. It’s a little odd to have a signal this long before the merger. The team calculate a probability for such a coincident to happen by chance, and find quite a small probability, so it might be interesting to follow this up more (see the INTEGRAL results below), but it’s probably just a coincidence (especially considering how many people did follow-up the event).
  • ANTARES—a search for high-energy muon neutrinos. No counterparts are identified in a ±500 s window around GW170104, or over a ±3 month period.
  • AstroSat-CZTI and GROWTH—a collaboration of observations across a range of wavelengths. They don’t find any hard X-ray counterparts. They do follow up on a bright optical transient ATLASaeu, suggested as a counterpart to GW170104, and conclude that this is a likely counterpart of long, soft gamma-ray burst GRB 170105A.
  • ATLAS and Pan-STARRS—optical follow-up. They identified a bright optical transient 23 hours after GW170104, ATLAS17aeu. This could be a counterpart to GRB 170105A. It seems unlikely that there is any mechanism that could allow for a day’s delay between the gravitational wave emission and an electromagnetic signal. However, the team calculate a small probability (few percent) of finding such a coincidence in sky position and time, so perhaps it is worth pondering. I wouldn’t put any money on it without a distance estimate for the source: assuming it’s a normal afterglow to a gamma-ray burst, you’d expect it to be further away than GW170104’s source.
  • Borexino—a search for low-energy neutrinos. This paper also discusses GW150914 and GW151226. In all cases, the observed rate of neutrinos is consistent with the expected background.
  • CALET—a gamma-ray search. This paper includes upper limits for GW151226, GW170104, GW170608, GW170814 and GW170817.
  • Fermi (GBM and LAT)—gamma-ray follow-up. They covered an impressive fraction of the sky localization, but didn’t find anything.
  • INTEGRAL—gamma-ray and hard X-ray observations. No significant emission is found, which makes the event reported by AGILE unlikely to be a counterpart to GW170104, although they cannot completely rule it out.
  • The intermediate Palomar Transient Factory—an optical survey. While searching, they discovered iPTF17cw, a broad-line type Ic supernova which is unrelated to GW170104 but interesting as it an unusual find.

If you are interested in what has been reported so far (no compelling counterpart candidates yet to my knowledge), there is an archive of GCN Circulars sent about GW170104.

Summary

Advanced LIGO has made its first detection of the second observing run. This is a further binary black hole coalescence. GW170104 has taught us that:

  • The discoveries of the first observing run were not a fluke. There really is a population of stellar mass black holes with masses above 25 M_\odot out there, and we can study them with gravitational waves.
  • Binary black hole spins may be typically misaligned or small. This is not certain yet, but it is certainly worth investigating potential mechanisms that could cause misalignment.
  • General relativity still works, even after considering our new tests.
  • If someone asks you to write a discovery paper, run. Run and do not look back.

Title: GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2
Journal:
 Physical Review Letters; 118(22):221101(17); 2017 (Supplemental Material)
arXiv: 1706.01812 [gr-qc]
Data release: LIGO Open Science Center
Science summary: 
 GW170104: Observation of a 50-solar-mass binary black hole coalescence at redshift 0.2

Bonus notes

Naming

Gravitational wave signals (at least the short ones, which are all that we have so far), are named by their detection date. GW170104 was discovered 2017 January 4. This isn’t too catchy, but is at least better than the ID number in our database of triggers (G268556) which is used in corresponding with our astronomer partners before we work out if the “GW” title is justified.

Previous detections have attracted nicknames, but none has stuck for GW170104. Archisman Ghosh suggested the Perihelion Event, as it was detected a few hours before the Earth reached its annual point closest to the Sun. I like this name, its rather poetic.

More recently, Alex Nitz realised that we should have called GW170104 the Enterprise-D Event, as the USS Enterprise’s registry number was NCC-1701. For those who like Star Trek: the Next Generation, I hope you have fun discussing whether GW170104 is the third or fourth (counting LVT151012) detection: “There are four detections!

The 6 January sky map

I would like to thank the wi-fi of Chiltern Railways for their role in producing the preliminary sky map. I had arranged to visit London for the weekend (because my rota slot was likely to be quiet… ), and was frantically working on the way down to check results so they could be sent out. I’d also like to thank John Veitch for putting together the final map while I was stuck on the Underground.

Binary black hole waveforms

The parameter estimation analysis works by matching a template waveform to the data to see how well it matches. The results are therefore sensitive to your waveform model, and whether they include all the relevant bits of physics.

In the first observing run, we always used two different families of waveforms, to see what impact potential errors in the waveforms could have. The results we presented in discovery papers used two quick-to-calculate waveforms. These include the effects of the black holes’ spins in different ways

  • SEOBNRv2 has spins either aligned or antialigned with the orbital angular momentum. Therefore, there is no precession (wobbling of orientation, like that of a spinning top) of the system.
  • IMRPhenomPv2 includes an approximate description of precession, packaging up the most important information about precession into a single parameter \chi_\mathrm{p}.

For GW150914, we also performed a follow-up analysis using a much more expensive waveform SEOBNRv3 which more fully includes the effect of both spins on precession. These results weren’t ready at the time of the announcement, because the waveform is laborious to run.

For GW170104, there were discussions that using a spin-aligned waveform was old hat, and that we should really only use the two precessing models. Hence, we started on the endeavour of producing SEOBNRv3 results. Fortunately, the code has been sped up a little, although it is still not quick to run. I am extremely grateful to Scott Coughlin (one of the folks behind Gravity Spy), Andrea Taracchini and Stas Babak for taking charge of producing results in time for the paper, in what was a Herculean effort.

I spent a few sleepless nights, trying to calculate if the analysis was converging quickly enough to make our target submission deadline, but it did work out in the end. Still, don’t necessarily expect we’ll do this for a all future detections.

Since the waveforms have rather scary technical names, in the paper we refer to IMRPhenomPv2 as the effective precession model and SEOBNRv3 as the full precession model.

On distance

Distance measurements for gravitational wave sources have significant uncertainties. The distance is difficult to measure as it determined from the signal amplitude, but this is also influences by the binary’s inclination. A signal could either be close and edge on or far and face on-face off.

Distance and inclination

Estimated luminosity distance D_\mathrm{L} and binary inclination angle \theta_{JN}. The two-dimensional shows the probability distribution for GW170104 as well as 50% and 90% contours. The one-dimensional plot shows results using different waveform models. The dotted lines mark the edge of our 90% probability intervals. Figure 4 of the GW170104 Supplemental Material (Figure 9 of the arXiv version).

The uncertainty on the distance rather awkwardly means that we can’t definitely say that GW170104 came from a further source than GW150914 or GW151226, but it’s a reasonable bet. The 90% credible intervals on the distances are 250–570 Mpc for GW150194, 250–660 Mpc for GW151226, 490–1330 Mpc for GW170104 and 500–1500 Mpc for LVT151012.

Translating from a luminosity distance to a travel time (gravitational waves do travel at the speed of light, our tests of dispersion are consistent wit that!), the GW170104 black holes merged somewhere between 1.3 and 3.0 billion years ago. This is around the time that multicellular life first evolved on Earth, and means that black holes have been colliding longer than life on Earth has been reproducing sexually.

Time line

A first draft of the paper (version 2; version 1 was a copy-and-paste of the Boxing Day Discovery Paper) was circulated to the Compact Binary Coalescence and Burst groups for comments on 4 March. This was still a rough version, and we wanted to check that we had a good outline of the paper. The main feedback was that we should include more about the astrophysical side of things. I think the final paper has a better balance, possibly erring on the side of going into too much detail on some of the more subtle points (but I think that’s better than glossing over them).

A first proper draft (version 3) was released to the entire Collaboration on 12 March in the middle of our Collaboration meeting in Pasadena. We gave an oral presentation the next day (I doubt many people had read the paper by then). Collaboration papers are usually allowed two weeks for people to comment, and we followed the same procedure here. That was not a fun time, as there was a constant trickle of comments. I remember waking up each morning and trying to guess how many emails would be in my inbox–I normally low-balled this.

I wasn’t too happy with version 3, it was still rather rough. The members of the Paper Writing Team had been furiously working on our individual tasks, but hadn’t had time to look at the whole. I was much happier with the next draft (version 4). It took some work to get this together, following up on all the comments and trying to address concerns was a challenge. It was especially difficult as we got a series of private comments, and trying to find a consensus probably made us look like the bad guys on all sides. We released version 4 on 14 April for a week of comments.

The next step was approval by the LIGO and Virgo executive bodies on 24 April. We prepared version 5 for this. By this point, I had lost track of which sentences I had written, which I had merely typed, and which were from other people completely. There were a few minor changes, mostly adding technical caveats to keep everyone happy (although they do rather complicate the flow of the text).

The paper was circulated to the Collaboration for a final week of comments on 26 April. Most comments now were about typos and presentation. However, some people will continue to make the same comment every time, regardless of how many times you explain why you are doing something different. The end was in sight!

The paper was submitted to Physical Review Letters on 9 May. I was hoping that the referees would take a while, but the reports were waiting in my inbox on Monday morning.

The referee reports weren’t too bad. Referee A had some general comments, Referee B had some good and detailed comments on the astrophysics, and Referee C gave the paper a thorough reading and had some good suggestions for clarifying the text. By this point, I have been staring at the paper so long that some outside perspective was welcome. I was hoping that we’d have a more thorough review of the testing general relativity results, but we had Bob Wald as one of our Collaboration Paper reviewers (the analysis, results and paper are all reviewed internally), so I think we had already been held to a high standard, and there wasn’t much left to say.

We put together responses to the reports. There were surprisingly few comments from the Collaboration at this point. I guess that everyone was getting tired. The paper was resubmitted and accepted on 20 May.

One of the suggestions of Referee A was to include some plots showing the results of the searches. People weren’t too keen on showing these initially, but after much badgering they were convinced, and it was decided to put these plots in the Supplemental Material which wouldn’t delay the paper as long as we got the material submitted by 26 May. This seemed like plenty of time, but it turned out to be rather frantic at the end (although not due to the new plots). The video below is an accurate representation of us trying to submit the final version.

I have an email which contains the line “Many Bothans died to bring us this information” from 1 hour and 18 minutes before the final deadline.

After this, things were looking pretty good. We had returned the proofs of the main paper (I had a fun evening double checking the author list. Yes, all of them). We were now on version 11 of the paper.

Of course, there’s always one last thing. On 31 May, the evening before publication, Salvo Vitale spotted a typo. Nothing serious, but annoying. The team at Physical Review Letters were fantastic, and took care of it immediately!

There’ll still be one more typo, there always is…

Looking back, it is clear that the principal bottle-neck in publishing the results is getting the Collaboration to converge on the paper. I’m not sure how we can overcome this… Actually, I have some ideas, but none that wouldn’t involve some form of doomsday device.

Detector status

The sensitivities of the LIGO Hanford and Livinston detectors are around the same as they were in the first observing run. After the success of the first observing run, the second observing run is the difficult follow up album. Livingston has got a little better, while Hanford is a little worse. This is because the Livingston team concentrate on improving low frequency sensitivity whereas the Hanford team focused on improving high frequency sensitivity. The Hanford team increased the laser power, but this introduces some new complications. The instruments are extremely complicated machines, and improving sensitivity is hard work.

The current plan is to have a long commissioning break after the end of this run. The low frequency tweaks from Livingston will be transferred to Hanford, and both sites will work on bringing down other sources of noise.

While the sensitivity hasn’t improved as much as we might have hoped, the calibration of the detectors has! In the first observing run, the calibration uncertainty for the first set of published results was about 10% in amplitude and 10 degrees in phase. Now, uncertainty is better than 5% in amplitude and 3 degrees in phase, and people are discussing getting this down further.

Spin evolution

As the binary inspirals, the orientation of the spins will evolve as they precess about. We always quote measurements of the spins at a point in the inspiral corresponding to a gravitational wave frequency of 20 Hz. This is most convenient for our analysis, but you can calculate the spins at other points. However, the resulting probability distributions are pretty similar at other frequencies. This is because the probability distributions are primarily determined by the combination of three things: (i) our prior assumption of a uniform distribution of spin orientations, (ii) our measurement of the effective inspiral spin, and (iii) our measurement of the mass ratio. A uniform distribution stays uniform as spins evolve, so this is unaffected, the effective inspiral spin is approximately conserved during inspiral, so this doesn’t change much, and the mass ratio is constant. The overall picture is therefore qualitatively similar at different moments during the inspiral.

Footnotes

I love footnotes. It was challenging for me to resist having any in the paper.

Gravity waves

It is possible that internal gravity waves (that is oscillations of the material making up the star, where the restoring force is gravity, not gravitational waves, which are ripples in spacetime), can transport angular momentum from the core of a star to its outer envelope, meaning that the two could rotate in different directions (Rogers, Lin & Lau 2012). I don’t think anyone has studied this yet for the progenitors of binary black holes, but it would be really cool if gravity waves set the properties of gravitational wave sources.

I really don’t want to proof read the paper which explains this though.

Colour scheme

For our plots, we use a consistent colour coding for our events. GW150914 is blue; LVT151012 is green; GW151226 is red–orange, and GW170104 is purple. The colour scheme is designed to be colour blind friendly (although adopting different line styles would perhaps be more distinguishable), and is implemented in Python in the Seaborn package as colorblind. Katerina Chatziioannou, who made most of the plots showing parameter estimation results is not a fan of the colour combinations, but put a lot of patient effort into polishing up the plots anyway.

Testing general relativity using golden black-hole binaries

Binary black hole mergers are the ultimate laboratory for testing gravity. The gravitational fields are strong, and things are moving at close to the speed of light. these extreme conditions are exactly where we expect our theories could breakdown, which is why we were so exciting by detecting gravitational waves from black hole coalescences. To accompany the first detection of gravitational waves, we performed several tests of Einstein’s theory of general relativity (it passed). This paper outlines the details of one of the tests, one that can be extended to include future detections to put Einstein’s theory to the toughest scrutiny.

One of the difficulties of testing general relativity is what do you compare it to? There are many alternative theories of gravity, but only a few of these have been studied thoroughly enough to give an concrete idea of what a binary black hole merger should look like. Even if general relativity comes out on top when compared to one alternative model, it doesn’t mean that another (perhaps one we’ve not thought of yet) can be ruled out. We need ways of looking for something odd, something which hints that general relativity is wrong, but doesn’t rely on any particular alternative theory of gravity.

The test suggested here is a consistency test. We split the gravitational-wave signal into two pieces, a low frequency part and a high frequency part, and then try to measure the properties of the source from the two parts. If general relativity is correct, we should get answers that agree; if it’s not, and there’s some deviation in the exact shape of the signal at different frequencies, we can get different answers. One way of thinking about this test is imagining that we have two experiments, one where we measure lower frequency gravitational waves and one where we measure higher frequencies, and we are checking to see if their results agree.

To split the waveform, we use a frequency around that of the last stable circular orbit: about the point that the black holes stop orbiting about each other and plunge together and merge [bonus note]. For GW150914, we used 132 Hz, which is about the same as the C an octave below middle C (a little before time zero in the simulation below). This cut roughly splits the waveform into the low frequency inspiral (where the two black hole are orbiting each other), and the higher frequency merger (where the two black holes become one) and ringdown (where the final black hole settles down).

We are fairly confident that we understand what goes on during the inspiral. This is similar physics to where we’ve been testing gravity before, for example by studying the orbits of the planets in the Solar System. The merger and ringdown are more uncertain, as we’ve never before probed these strong and rapidly changing gravitational fields. It therefore seems like a good idea to check the two independently [bonus note].

We use our parameter estimation codes on the two pieces to infer the properties of the source, and we compare the values for the mass M_f and spin \chi_f of the final black hole. We could use other sets of parameters, but this pair compactly sum up the properties of the final black hole and are easy to explain. We look at the difference between the estimated values for the mass and spin, \Delta M_f and \Delta \chi_f, if general relativity is a good match to the observations, then we expect everything to match up, and \Delta M_f and \Delta \chi_f to be consistent with zero. They won’t be exactly zero because we have noise in the detector, but hopefully zero will be within the uncertainty region [bonus note]. An illustration of the test is shown below, including one of the tests we did to show that it does spot when general relativity is not correct.

Consistency test resuls

Results from the consistency test. The top panels show the outlines of the 50% and 90% credible levels for the low frequency (inspiral) part of the waveform, the high frequency (merger–ringdown) part, and the entire (inspiral–merger–ringdown, IMR) waveform. The bottom panel shows the fractional difference between the high and low frequency results. If general relativity is correct, we expect the distribution to be consistent with (0,0), indicated by the cross (+). The left panels show a general relativity simulation, and the right panel shows a waveform from a modified theory of gravity. Figure 1 of Ghosh et al. (2016).

A convenient feature of using \Delta M_f and \Delta \chi_f to test agreement with relativity, is that you can combine results from multiple observations. By averaging over lots of signals, you can reduce the uncertainty from noise. This allows you to pin down whether or not things really are consistent, and spot smaller deviations (we could get precision of a few percent after about 100 suitable detections). I look forward to seeing how this test performs in the future!

arXiv: 1602.02453 [gr-qc]
Journal: Physical Review D; 94(2):021101(6); 2016
Favourite golden thing: Golden syrup sponge pudding

Bonus notes

Review

I became involved in this work as a reviewer. The LIGO Scientific Collaboration is a bit of a stickler when it comes to checking its science. We had to check that the test was coded up correctly, that the results made sense, and that calculations done and written up for GW150914 were all correct. Since most of the team are based in India [bonus note], this involved some early morning telecons, but it all went smoothly.

One of our checks was that the test wasn’t sensitive to exact frequency used to split the signal. If you change the frequency cut, the results from the two sections do change. If you lower the frequency, then there’s less of the low frequency signal and the measurement uncertainties from this piece get bigger. Conversely, there’ll be more signal in the high frequency part and so we’ll make a more precise measurement of the parameters from this piece. However, the overall results where you combine the two pieces stay about the same. You get best results when there’s a roughly equal balance between the two pieces, but you don’t have to worry about getting the cut exactly on the innermost stable orbit.

Golden binaries

In order for the test to work, we need the two pieces of the waveform to both be loud enough to allow us to measure parameters using them. This type of signals are referred to as golden. Earlier work on tests of general relativity using golden binaries has been done by Hughes & Menou (2015), and Nakano, Tanaka & Nakamura (2015). GW150914 was a golden binary, but GW151226 and LVT151012 were not, which is why we didn’t repeat this test for them.

GW150914 results

For The Event, we ran this test, and the results are consistent with general relativity being correct. The plots below show the estimates for the final mass and spin (here denoted a_f rather than \chi_f), and the fractional difference between the two measurements. The points (0,0) is at the 28% credible level. This means that if general relativity is correct, we’d expect a deviation at this level to occur around-about 72% of the time due to noise fluctuations. It wouldn’t take a particular rare realisation of noise to cause the assume true value of (0,0) to be found at this probability level, so we’re not too suspicious that something is amiss with general relativity.

GW150914 consistency test results

Results from the consistency test for The Event. The top panels final mass and spin measurements from the low frequency (inspiral) part of the waveform, the high frequency (post-inspiral) part, and the entire (IMR) waveform. The bottom panel shows the fractional difference between the high and low frequency results. If general relativity is correct, we expect the distribution to be consistent with (0,0), indicated by the cross. Figure 3 of the Testing General Relativity Paper.

The authors

Abhirup Ghosh and Archisman Ghosh were two of the leads of this study. They are both A. Ghosh at the same institution, which caused some confusion when compiling the LIGO Scientific Collaboration author list. I think at one point one of them (they can argue which) was removed as someone thought there was a mistaken duplication. To avoid confusion, they now have their full names used. This is a rare distinction on the Discovery Paper (I’ve spotted just two others). The academic tradition of using first initials plus second name is poorly adapted to names which don’t fit the typical western template, so we should be more flexible.

The Boxing Day Event

Advanced LIGO’s first observing run (O1) got off to an auspicious start with the detection of GW150914 (The Event to its friends). O1 was originally planned to be three months long (September to December), but after the first discovery, there were discussions about extending the run. No major upgrades to the detectors were going to be done over the holidays anyway, so it was decided that we might as well leave them running until January.

By the time the Christmas holidays came around, I was looking forward to some time off. And, of course, lots of good food and the Doctor Who Christmas Special. The work on the first detection had been exhausting, and the Collaboration reached the collective decision that we should all take some time off [bonus note]. Not a creature was stirring, not even a mouse.

On Boxing Day, there was a sudden flurry of emails. This could only mean one thing. We had another detection! Merry GW151226 [bonus note]!

A Christmas gift

I assume someone left out milk and cookies at the observatories. A not too subtle hint from Nutsinee Kijbunchoo’s comic in the LIGO Magazine.

I will always be amazed how lucky we were detecting GW150914. This could have been easily missed if we were just a little later starting observing. If that had happened, we might not have considered extended O1, and would have missed GW151226 too!

GW151226 is another signal from a binary black hole coalescence. This wasn’t too surprising at the time, as we had estimated such signals should be pretty common. It did, however, cause a slight wrinkle in discussions of what to do in the papers about the discovery of GW150914. Should we mention that we had another potential candidate? Should we wait until we had analysed the whole of O1 fully? Should we pack it all in and have another slice of cake? In the end we decided that we shouldn’t delay the first announcement, and we definitely shouldn’t rush the analysis of the full data set. Therefore, we went ahead with the original plan of just writing about the first month of observations and giving slightly awkward answers, mumbling about still having data to analyse, when asked if we had seen anything else [bonus note]. I’m not sure how many people outside the Collaboration suspected.

The science

What have we learnt from analysing GW151226, and what have we learnt from the whole of O1? We’ve split our results into two papers.

0. The Boxing Day Discovery Paper

Title: GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole
arXiv: 1606.04855 [gr-qc]
Journal: Physical Review Letters116(24):241103(14)
LIGO science summary: GW151226: Observation of gravitational waves from a 22 solar-mass binary black hole (by Hannah Middleton and Carl-Johan Haster)

This paper presents the discovery of GW151226 and some of the key information about it. GW151226 is not as loud as GW150914, you can’t spot it by eye in the data, but it still stands out in our search. This is a clear detection! It is another binary black hole system, but it is a lower mass system than GW150914 (hence the paper’s title—it’s a shame they couldn’t put in the error bars though).

This paper summarises the highlights of the discovery, so below, I’ll explain these without going into too much technical detail.

More details: The Boxing Day Discovery Paper summary

1. The O1 Binary Black Hole Paper

Title: Binary black hole mergers in the first Advanced LIGO observing run
arXiv: 1606.04856 [gr-qc]
Journal: Physical Review X6(4):041015(36)
Posterior samples: Release v1.0

This paper brings together (almost) everything we’ve learnt about binary black holes from O1. It discusses GW150915, LVT151012 and GW151226, and what we are starting to piece together about stellar-mass binary black holes from this small family of gravitational-wave events.

For the announcement of GW150914, we put together 12 companion papers to go out with the detection announcement. This paper takes on that role. It is Robin, Dr Watson, Hermione and Samwise Gamgee combined. There’s a lot of delicious science packed into this paper (searches, parameter estimation, tests of general relativity, merger rate estimation, and astrophysical implications). In my summary below, I’ll delve into what we have done and what our results mean.

More details: The O1 Binary Black Hole Paper summary

If you are interested in our science results, you can find data releases accompanying the events at the LIGO Open Science Center. These pages also include some wonderful tutorials to play with.

The Boxing Day Discovery Paper

Synopsis: Boxing Day Discovery Paper
Read this if: You are excited about the discovery of GW151226
Favourite part: We’ve done it again!

The signal

GW151226 is not as loud as GW150914, you can’t spot it by eye in the data. Therefore, this paper spends a little more time than GW150914’s Discovery Paper talking about the ingredients for our searches.

GW151226 was found by two pipelines which specifically look for compact binary coalescences: the inspiral and merger of neutron stars or black holes. We have templates for what we think these signals should look like, and we filter the data against a large bank of these to see what matches [bonus note].

For the search to work, we do need accurate templates. Figuring out what the waveforms for binary black coalescence should look like is a difficult job, and has taken almost as long as figuring out how to build the detectors!

The signal arrived at Earth 03:38:53 GMT on 26 December 2015 and was first identified by a search pipeline within 70 seconds. We didn’t have a rapid templated search online at the time of GW150914, but decided it would be a good idea afterwards. This allowed us to send out an alert to our astronomer partners so they could look for any counterparts (I don’t think any have been found [bonus note]).

The unmodelled searches (those which don’t use templates, but just coherent signals in both detectors) which first found GW150914 didn’t find GW151226. This isn’t too surprising, as they are less sensitive. You can think of the templated searches as looking for Wally (or Waldo if you’re North American), using the knowledge that he’s wearing glasses, and a red and white stripped bobble hat, but the unmodelled searches are looking for him just knowing that he’s the person that’s on on every page.

GW151226 is the second most significant event in the search for binary black holes after The Event. Its significance is not quite off the charts, but is great enough that we have a hard time calculating exactly how significant it is. Our two search pipelines give estimates of the p-value (the probability you’d see something at least this signal-like if you only had noise in your detectors) of < 10^{-7} and 3.5 \times 10^{-6}, which are pretty good!

The source

To figure out the properties of the source, we ran our parameter-estimation analysis.

GW151226 comes from a black hole binary with masses of 14.2^{+8.3}_{-3.7} M_\odot and 7.5^{+2.3}_{-2.3} M_\odot [bonus note], where M_\odot is the mass of our Sun (about 330,000 times the mass of the Earth). The error bars indicate our 90% probability ranges on the parameters. These black holes are less massive than the source of GW150914 (the more massive black hole is similar to the less massive black hole of LVT151012). However, the masses are still above what we believe is the maximum possible mass of a neutron star (around 3 M_\odot). The masses are similar to those observed for black holes in X-ray binaries, so perhaps these black holes are all part of the same extended family.

A plot showing the probability distributions for the masses is shown below. It makes me happy. Since GW151226 is lower mass than GW150914, we see more of the inspiral, the portion of the signal where the two black holes are spiralling towards each other. This means that we measure the chirp mass, a particular combination of the two masses really well. It is this which gives the lovely banana shape to the distribution. Even though I don’t really like bananas, it’s satisfying to see this behaviour as this is what we have been expecting too see!

Binary black hole masses

Estimated masses for the two black holes in the binary of the Boxing Day Event. The dotted lines mark the edge of our 90% probability intervals. The different coloured curves show different models: they agree which again made me happy! The two-dimensional distribution follows a curve of constant chirp mass. The sharp cut-off at the top-left is because m_1^\mathrm{source} is defined to be bigger than m_2^\mathrm{source}. Figure 3 of The Boxing Day Discovery Paper.

The two black holes merge to form a final black hole of 20.8^{+6.1}_{-1.7} M_\odot [bonus note].

If you add up the initial binary masses and compare this to the final mass, you’ll notice that something is missing. Across the entire coalescence, gravitational waves carry away 1.0^{+0.1}_{-0.2} M_\odot c^2 \simeq 1.8^{+0.2}_{-0.4} \times 10^{47}~\mathrm{J} of energy (where c is the speed of light, which is used to convert masses to energies). This isn’t quite as impressive as the energy of GW150914, but it would take the Sun 1000 times the age of the Universe to output that much energy.

The mass measurements from GW151226 are cool, but what’re really exciting are the spin measurements. Spin, as you might guess, is a measure of how much angular momentum a black hole has. We define it to go from zero (not spinning) to one (spinning as much as is possible). A black hole is fully described by its mass and spin. The black hole masses are most important in defining what a gravitational wave looks like, but the imprint of spin is more subtle. Therefore its more difficult to get a good measurement of the spins than the masses.

For GW150915 and LVT151012, we get a little bit of information on the spins. We can conclude that the spins are probably not large, or at least they are not large and aligned with the orbit of the binary. However, we can’t say for certain that we’ve seen any evidence that the black holes are spinning. For GW151226, al least one of the black holes (although we can’t say which) has to be spinning [bonus note].

The plot below shows the probability distribution for the two spins of the binary black holes. This shows the both the magnitude of the spin and the direction that of the spin (if the tilt is zero the black hole and the binary’s orbit both go around in the same way). You can see we can’t say much about the spin of the lower mass black hole, but we have a good idea about the spin of the more massive black hole (the more extreme the mass ratio, the less important the spin of lower mass black is, making it more difficult to measure). Hopefully we’ll learn more about spins in future detections as these could tell us something about how these black holes formed.

Orientation and magnitudes of the two spins

Estimated orientation and magnitude of the two component spins. Calculated with our precessing waveform model. The distribution for the more massive black hole is on the left, and for the smaller black hole on the right. Part of Figure 4 of The Boxing Day Discovery Paper.

There’s still a lot to learn about binary black holes, and future detections will help with this. More information about what we can squeeze out of our current results are given in the O1 Binary Black Hole Paper.

The O1 Binary Black Hole Paper

Synopsis: O1 Binary Black Hole Paper
Read this if: You want to know everything we’ve learnt about binary black holes
Favourite part: The awesome table of parameters at the end

This paper contains too much science to tackle all at once, so I’ve split it up into more bite-sized pieces, roughly following the flow of the paper. First we discuss how we find signals. Then we discuss the parameters inferred from the signals. This is done assuming that general relativity is correct, so we check for any deviations from predictions in the next section. After that, we consider the rate of mergers and what we expect for the population of binary black holes from our detections. Finally, we discuss our results in the context of wider astrophysics.

Searches

Looking for signals hidden amongst the data is the first thing to do. This paper only talks about the template search for binary black holes: other search results (including the results for binaries including neutron stars) we will reported elsewhere.

The binary black hole search was previously described in the Compact Binary Coalescence Paper. We have two pipelines which look for binary black holes using templates: PyCBC and GstLAL. These look for signals which are found in both detectors (within 15 ms of each other) which match waveforms in the template bank. A few specifics of these have been tweaked since the start of O1, but these don’t really change any of the results. An overview of the details for both pipelines are given in Appendix A of the paper.

The big difference from Compact Binary Coalescence Paper is the data. We are now analysing the whole of O1, and we are using an improved version of the calibration (although this really doesn’t affect the search). Search results are given in Section II. We have one new detection: GW151226.

Search results and GW150914, GW151226 and LVT151012

Search results for PyCBC (left) and GstLAL (right). The histograms show the number of candidate events (orange squares) compare to the background. The further an orange square is to the right of the lines, the more significant it is. Different backgrounds are shown including and excluding GW150914 (top row) and GW151226 (bottom row). Figure 3 from the O1 Binary Black Hole Paper.

The plots above show the search results. Candidates are ranked by a detection statistic (a signal-to-noise ratio modified by a self-consistency check \hat{\rho}_c for PyCBC, and a ratio of likelihood for the signal and noise hypotheses \ln \mathcal{L} for GstLAL). A larger detection statistic means something is more signal-like and we assess the significance by comparing with the background of noise events. The further above the background curve an event is, the more significant it is. We have three events that stand out.

Number 1 is GW150914. Its significance has increased a little from the first analysis, as we can now compare it against more background data. If we accept that GW150914 is real, we should remove it from the estimation of the background: this gives us the purple background in the top row, and the black curve in the bottom row.

GW151226 is the second event. It clearly stands out when zooming in for the second row of plots. Identifying GW150914 as a signal greatly improves GW151226’s significance.

The final event is LVT151012. Its significance hasn’t changed much since the initial analysis, and is still below our threshold for detection. I’m rather fond of it, as I do love an underdog.

Parameter estimation

To figure out the properties of all three events, we do parameter estimation. This was previously described in the Parameter Estimation Paper. Our results for GW150914 and LVT151012 have been updated as we have reran with the newer calibration of the data. The new calibration has less uncertainty, which improves the precision of our results, although this is really only significant for the sky localization. Technical details of the analysis are given in Appendix B and results are discussed in Section IV. You may recognise the writing style of these sections.

The probability distributions for the masses are shown below. There is quite a spectrum, from the low mass GW151226, which is consistent with measurements of black holes in X-ray binaries, up to GW150914, which contains the biggest stellar-mass black holes ever observed.

All binary black hole masses

Estimated masses for the two binary black holes for each of the events in O1. The contours mark the 50% and 90% credible regions. The grey area is excluded from our convention that m_1^\mathrm{source} \geq m_2^\mathrm{source}. Part of Figure 4 of the O1 Binary Black Hole Paper.

The distributions for the lower mass GW151226 and LVT151012 follow the curves of constant chirp mass. The uncertainty is greater for LVT151012 as it is a quieter (lower SNR) signal. GW150914 looks a little different, as the merger and ringdown portions of the waveform are more important. These place tighter constraints on the total mass, explaining the shape of the distribution.

Another difference between the lower mass inspiral-dominated signals and the higher mass GW150915 can be seen in the plot below. The shows the probability distributions for the mass ratio q = m_2^\mathrm{source}/m_1^\mathrm{source} and the effective spin parameter \chi_\mathrm{eff}, which is a mass-weighted combination of the spins aligned with the orbital angular momentum. Both play similar parts in determining the evolution of the inspiral, so there are stretching degeneracies for GW151226 and LVT151012, but this isn’t the case for GW150914.

All mass ratios and effective spins

Estimated mass ratios q and effective spins \chi_\mathrm{eff} for each of the events in O1. The contours mark the 50% and 90% credible regions. Part of Figure 4 of the O1 Binary Black Hole Paper.

If you look carefully at the distribution of \chi_\mathrm{eff} for GW151226, you can see that it doesn’t extend down to zero. You cannot have a non-zero \chi_\mathrm{eff} unless at least one of the black holes is spinning, so this clearly shows the evidence for spin.

The final masses of the remnant black holes are shown below. Each is around 5% less than the total mass of the binary which merged to form it, with the rest radiated away as gravitational waves.

All final masses and spins

Estimated masses M_\mathrm{f}^\mathrm{source} and spins a_\mathrm{f} of the remnant black holes for each of the events in O1. The contours mark the 50% and 90% credible regions. Part of Figure 4 of the O1 Binary Black Hole Paper.

The plot also shows the final spins. These are much better constrained than the component spins as they are largely determined by the angular momentum of the binary as it merged. This is why the spins are all quite similar. To calculate the final spin, we use an updated formula compared to the one in the Parameter Estimation Paper. This now includes the effect of the components’ spin which isn’t aligned with the angular momentum. This doesn’t make much difference for GW150914 or LVT151012, but the change is slightly more for GW151226, as it seems to have more significant component spins.

The luminosity distance for the sources is shown below. We have large uncertainties because the luminosity distance is degenerate with the inclination. For GW151226 and LVT151012 this does result in some beautiful butterfly-like distance–inclination plots. For GW150914, the butterfly only has the face-off inclination wing (probably as consequence of the signal being louder and the location of the source on the sky). The luminosity distances for GW150914 and GW151226 are similar. This may seem odd, because GW151226 is a quieter signal, but that is because it is also lower mass (and so intrinsically quieter).

All luminosity distances

Probability distributions for the luminosity distance of the source of each of the three events in O1. Part of Figure 4 of the O1 Binary Black Hole Paper.

Sky localization is largely determined by the time delay between the two observatories. This is one of the reasons that having a third detector, like Virgo, is an awesome idea. The plot below shows the localization relative to the Earth. You can see that each event has a localization that is part of a ring which is set by the time delay. GW150914 and GW151226 were seen by Livingston first (apparently there is some gloating about this), and LVT151012 was seen by Hanford first.

Sky localization relative to Earth.

Estimated sky localization relative to the Earth for each of the events in O1. The contours mark the 50% and 90% credible regions. H+ and L+ mark the locations of the two observatories. Part of Figure 5 of the O1 Binary Black Hole Paper.

Both GW151226 and LVT151012 are nearly overhead. This isn’t too surprising, as this is where the detectors are most sensitive, and so where we expect to make the most detections.

The improvement in the calibration of the data is most evident in the sky localization. For GW150914, the reduction in calibration uncertainty improves the localization by a factor of ~2–3! For LVT151012 it doesn’t make much difference because of its location and because it is a much quieter signal.

The map below shows the localization on the sky (actually where in Universe the signal came from). The maps have rearranged themselves because of the Earth’s rotation (each event was observed at a different sidereal time).

Sky localization in equatorial coordinates

Estimated sky localization (in right ascension and declination) for each of the events in O1. The contours mark the 50% and 90% credible regions. Part of Figure 5 of the O1 Binary Black Hole Paper.

We’re nowhere near localising sources to single galaxies, so we may never know exactly where these signals originated from.

Tests of general relativity

The Testing General Relativity Paper reported several results which compared GW150914 with the predictions of general relativity. Either happily or sadly, depending upon your point of view, it passed them all. In Section V of the paper, we now add GW151226 into the mix. (We don’t add LVT151012 as it’s too quiet to be much use).

A couple of the tests for GW150914 looked at the post-inspiral part of the waveform, looking at the consistency of mass and spin estimates, and trying to match the ringdown frequency. Since GW151226 is lower mass, we can’t extract any meaningful information from the post-inspiral portion of the waveform, and so it’s not worth repeating these tests.

However, the fact that GW151226 has such a lovely inspiral means that we can place some constraints on post-Newtonian parameters. We have lots and lots of cycles, so we are sensitive to any small deviations that arise during inspiral.

The plot below shows constraints on deviations for a set of different waveform parameters. A deviation of zero indicates the value in general relativity. The first four boxes (for parameters referred to as \varphi_i in the Testing General Relativity Paper) are parameters that affect the inspiral. The final box on the right is for parameters which impact the merger and ringdown. The top row shows results for GW150914, these are updated results using the improved calibrated data. The second row shows results for GW151226, and the bottom row shows what happens when you combine the two.

O1 testing general relativity bounds

Probability distributions for waveform parameters. The top row shows bounds from just GW150914, the second from just GW151226, and the third from combining the two. A deviation of zero is consistent with general relativity. Figure 6 from the O1 Binary Black hole Paper.

All the results are happily about zero. There were a few outliers for GW150914, but these are pulled back in by GW151226. We see that GW151226 dominates the constraints on the inspiral parameters, but GW150914 is more important for the merger–ringdown \alpha_i parameters.

Again, Einstein’s theory passes the test. There is no sign of inconsistency (yet). It’s clear that adding more results greatly improves our sensitivity to these parameters, so these tests will continue put general relativity through tougher and tougher tests.

Rates

We have a small number of events, around 2.9 in total, so any estimates of how often binary black holes merge will be uncertain. Of course, just because something is tricky, it doesn’t mean we won’t give it a go! The Rates Paper discussed estimates after the first 16 days of coincident data, when we had just 1.9 events. Appendix C gives technical details and Section VI discusses results.

The whole of O1 is about 52 days’ worth of coincident data. It’s therefore about 3 times as long as the initial stretch. in that time we’ve observed about 3/2 times as many events. Therefore, you might expect that the event rate is about 1/2 of our original estimates. If you did, get yourself a cookie, as you are indeed about right!

To calculate the rates we need to assume something about the population of binary black holes. We use three fiducial distributions:

  1. We assume that binary black holes are either like GW150914, LVT151012 or GW151226. This event-based rate is different from the previous one as it now includes an extra class for GW151226.
  2. A flat-in-the-logarithm-of-masses distribution, which we expect gives a sensible lower bound on the rate.
  3. A power law slope for the larger black hole of -2.35, which we expect gives a sensible upper bound on the rate.

We find that the rates are 1. 54^{+111}_{-40}~\mathrm{Gpc^{-3}\,yr^{-1}}, 2. 30^{+46}_{-21}~\mathrm{Gpc^{-3}\,yr^{-1}}, and 3. 97^{+149}_{-68}~\mathrm{Gpc^{-3}\,yr^{-1}}. As expected, the first rate is nestled between the other two.

Despite the rates being lower, there’s still a good chance we could see 10 events by the end of O2 (although that will depend on the sensitivity of the detectors).

A new results that is included in with the rates, is a simple fit for the distribution of black hole masses [bonus note]. The method is described in Appendix D. It’s just a repeated application of Bayes’ theorem to go from the masses we measured from the detected sources, to the distribution of masses of the entire population.

We assume that the mass of the larger black hole is distributed according to a power law with index \alpha, and that the less massive black hole has a mass uniformly distributed in mass ratio, down to a minimum black hole mass of 5 M_\odot. The cut-off, is the edge of a speculated mass gap between neutron stars and black holes.

We find that \alpha = 2.5^{+1.5}_{-1.6}. This has significant uncertainty, so we can’t say too much yet. This is a slightly steeper slope than used for the power-law rate (although entirely consistent with it), which would nudge the rates a little lower. The slope does fit in with fits to the distribution of masses in X-ray binaries. I’m excited to see how O2 will change our understanding of the distribution.

Astrophysical implications

With the announcement of GW150914, the Astrophysics Paper reviewed predictions for binary black holes in light of the discovery. The high masses of GW150914 indicated a low metallicity environment, perhaps no more than half of solar metallicity. However, we couldn’t tell if GW150914 came from isolated binary evolution (two stars which have lived and died together) or a dynamical interaction (probably in a globular cluster).

Since then, various studies have been performed looking at both binary evolution (Eldridge & Stanway 2016; Belczynski et al. 2016de Mink & Mandel 2016Hartwig et al. 2016; Inayoshi et al. 2016; Lipunov et al. 2016) and dynamical interactions (O’Leary, Meiron & Kocsis 2016; Mapelli 2016; Rodriguez et al. 2016), even considering binaries around supermassive black holes (Bartos et al. 2016; Stone, Metzger & Haiman 2016). We don’t have enough information to tell the two pathways apart. GW151226 gives some new information. Everything is reviewed briefly in Section VII.

GW151226 and LVT151012 are lower mass systems, and so don’t need to come from as low a metallicity environment as GW150914 (although they still could). Both are also consistent with either binary evolution or dynamical interactions. However, the low masses of GW151226 mean that it probably does not come from one particular binary formation scenario, chemically homogeneous evolution, and it is less likely to come from dynamical interactions.

Building up a population of sources, and getting better measurements of spins and mass ratios will help tease formation mechanisms apart. That will take a while, but perhaps it will be helped if we can do multi-band gravitational-wave astronomy with eLISA.

This section also updates predictions from the Stochastic Paper for the gravitational-wave background from binary black holes. There’s a small change from an energy density of \Omega_\mathrm{GW} = 1.1^{+2.7}_{-0.9} \times 10^{-9} at a frequency of 25 Hz to \Omega_\mathrm{GW} = 1.2^{+1.9}_{-0.9} \times 10^{-9}. This might be measurable after a few years at design sensitivity.

Conclusion

We are living in the future. We may not have hoverboards, but the era of gravitational-wave astronomy is here. Not in 20 years, not in the next decade, not in five more years, now. LIGO has not just opened a new window, it’s smashed the window and jumped through it just before the explosion blasts the side off the building. It’s so exciting that I can’t even get my metaphors straight. The introductory paragraphs of papers on gravitational-wave astronomy will never be the same again.

Although we were lucky to discover GW150914, it wasn’t just a fluke. Binary black coalescences aren’t that rare and we should be detecting more. Lots more. You know that scene in a movie where the heroes have defeated a wave of enemies and then the camera pans back to show the approaching hoard that stretches to the horizon? That’s where we are now. O2 is coming. The second observing run, will start later this year, and we expect we’ll be adding many entries to our list of binary black holes.

We’re just getting started with LIGO and Virgo. There’ll be lots more science to come.

If you made it this far, you deserve a biscuit. A fancy one too, not just a digestive.

Or, if you’re hungry for more, here are some blogs from my LIGO colleagues

  • Daniel Williams (a PhD student at University of Glasgow)
  • Matt Pitkin (who is hunting for continuous gravitational waves)
  • Shane Larson (who is also investigating mutli-band gravitational-wave astronomy)
  • Amber Sturver (who works at the Livingston Observatory)

My group at Birmingham also made some short reaction videos (I’m too embarrassed to watch mine).

Bonus notes

Christmas cease-fire

In the run-up to the holidays, there were lots of emails that contained phrases like “will have to wait until people get back from holidays” or “can’t reply as the group are travelling and have family commitments”. No-one ever said that they were taking a holiday, but just that it was happening in general, so we’d all have to wait for a couple of weeks. No-one ever argued with this, because, of course, while you were waiting for other people to do things, there was nothing you could do, and so you might as well take some time off. And you had been working really hard, so perhaps an evening off and an extra slice of cake was deserved…

Rather guiltily, I must confess to ignoring the first few emails on Boxing Day. (Although I saw them, I didn’t read them for reasons of plausible deniability). I thought it was important that my laptop could have Boxing Day off. Thankfully, others in the Collaboration were more energetic and got things going straight-away.

Naming

Gravitational-wave candidates (or at least the short ones from merging binary black holes which we have detected so far), start off life named by a number in our database. This event started life out as G211117. After checks and further analysis, to make sure we can’t identify any environmental effects which could have caused the detector to misbehave, candidates are renamed. Those which are significant enough to be claimed as a detection get the Gravitational Wave (GW) prefix. Those we are less certain of get the LIGO–Virgo Trigger (LVT) prefix. The rest of the name is the date in Coordinated Universal Time (UTC). The new detection is GW151226.

Informally though, it is the Boxing Day Event. I’m rather impressed that this stuck as the Collaboration is largely US based: it was still Christmas Day in the US when the detection was made, and Americans don’t celebrate Boxing Day anyway.

Other searches

We are now publishing the results of the O1 search for binary black holes with a template bank which goes up to total observed binary masses of 100 M_\odot. Therefore we still have to do the same about searches for anything else. The results from searches for other compact binaries should appear soon (binary neutron star and neutron star–black hole upper limits; intermediate mass black hole binary upper limits). It may be a while before we have all the results looking for continuous waves.

Matched filtering

The compact binary coalescence search uses matched filtering to hunt for gravitational waves. This is a well established technique in signal processing. You have a template signal, and you see how this correlates with the data. We use the detectors’ sensitivity to filter the data, so that we give more weight to bits which match where we are sensitive, and little weight to matches where we have little sensitivity.

I imagine matched filtering as similar to how I identify a piece of music: I hear a pattern of notes and try to compare to things I know. Dum-dum-dum-daah? Beethoven’s Fifth.

Filtering against a large number of templates takes a lot of computational power, so we need to be cunning as to which templates we include. We don’t want to miss anything, so we need enough templates to cover all possibilities, but signals from similar systems can look almost identical, so we just need one representative template included in the bank. Think of trying to pick out Under Pressure, you could easily do this with a template for Ice Ice Baby, and you don’t need both Mr Brightside and Ode to Joy.

It doesn’t matter if the search doesn’t pick out a template that perfectly fits the properties of the source, as this is what parameter estimation is for.

The figure below shows how effective matched filtering can be.

  • The top row shows the data from the two interferometers. It’s been cleaned up a little bit for the plot (to keep the experimentalists happy), but you can see that the noise in the detectors is seemingly much bigger than the best match template (shown in black, the same for both detectors).
  • The second row shows the accumulation of signal-to-noise ratio (SNR). If you correlate the data with the template, you see that it matches the template, and keeps matching the template. This is the important part, although, at any moment it looks like there’s just random wibbles in the detector, when you compare with a template you find that there is actually a signal which evolves in a particular way. The SNR increases until the signal stops (because the black holes have merged). It is a little lower in the Livinston detector as this was slightly less sensitive around the time of the Boxing Day Event.
  • The third row shows how much total SNR you would get if you moved the best match template around in time. There’s a clear peak. This is trying to show that the way the signal changes is important, and you wouldn’t get a high SNR when the signal isn’t there (you would normally expect it to be about 1).
  • The final row shows the amount of energy at a particular frequency at a particular time. Compact binary coalescences have a characteristic chirp, so you would expect a sweep from lower frequencies up to higher frequencies. You can just about make it out in these plots, but it’s not obvious as for GW150914. This again shows the value of matched filtering, but it also shows that there’s no other weird glitchy stuff going on in the detectors at the time.
The effectiveness of matched filtering for GW151226

Observation of The Boxing Day Event in LIGO Hanford and LIGO Livingston. The top row shows filtered data and best match template. The second row shows how this template accumulates signal-to-noise ratio. The third row shows signal-to-noise ratio of this template at different end times. The fourth row shows a spectrogram of the data. Figure 1 of the Boxing Day Discovery Paper.

Electromagnetic and neutrino follow-up

Reports by electromagnetic astronomers on their searches for counterparts so far are:

Reports by neutrino astronomers are:

  • ANTARES and IceCube—a search for high-energy neutrinos (above 100 GeV) coincident with LVT151012 or GW151226.
  • KamLAND—a search for neutrinos (1.8 MeV to 111 MeV) coincident with GW150914, LVT151012 or GW151226.
  • Pierre Auger Observatory—a search for ultra high-energy (above 100 PeV) neutrinos coincident with GW150914, LVT151012 or GW151226.
  • Super-Kamiokande—a search for neutrinos (of a wide range of energies, from 3.5 MeV to 100 PeV) coincident with GW150914 or GW151226.
  • Borexino—a search for low-energy (250 keV to 15 MeV) neutrinos coincident with GW150914, GW151226 and GW170104.

No counterparts have been claimed, which isn’t surprising for a binary black hole coalescence.

Rounding

In various places, the mass of the smaller black hole is given as 8 M_\odot. The median should really round to 7 M_\odot as to three significant figures it is 7.48 M_\odot. This really confused everyone though, as with rounding you’d have a binary with components of masses 14 M_\odot and 7 M_\odot and total mass 22 M_\odot. Rounding is a pain! Fortunately, 8 M_\odot lies well within the uncertainty: the 90% range is 5.2\text{--}9.8 M_\odot.

Black holes are massive

I tried to find a way to convert the mass of the final black hole into every day scales. Unfortunately, the thing is so unbelievably massive, it just doesn’t work: it’s no use relating it to elephants or bowling balls. However, I did have some fun looking up numbers. Currently, it costs about £2 to buy a 180 gram bar of Cadbury’s Bourneville. Therefore, to buy an equivalent amount of dark chocolate would require everyone on Earth to save up for about 600 millions times the age of the Universe (assuming GDP stays constant). By this point, I’m sure the chocolate will be past its best, so it’s almost certainly a big waste of time.

Maximum minimum spin

One of the statistics people really seemed to latch on to for the Boxing Day Event was that at least one of the binary black holes had to have a spin of greater than 0.2 with 99% probability. It’s a nice number for showing that we have a preference for some spin, but it can be a bit tricky to interpret. If we knew absolutely nothing about the spins, then we would have a uniform distribution on both spins. There’d be a 10% chance that the spin of the more massive black hole is less than 0.1, and a 10% chance that the spin of the other black hole is less than 0.1. Hence, there’s a 99% probability that there is at least one black hole with spin greater than 0.1, even though we have no evidence that the black holes are spinning (or not). Really, you need to look at the full probability distributions for the spins, and not just the summary statistics, to get an idea of what’s going on.

Just one more thing…

The fit for the black hole mass distribution was the last thing to go in the paper. It was a bit frantic to get everything reviewed in time. In the last week, there were a couple of loud exclamations from the office next to mine, occupied by John Veitch, who as one of the CBC chairs has to keep everything and everyone organised. (I’m not quite sure how John still has so much of his hair). It seems that we just can’t stop doing science. There is a more sophisticated calculation in the works, but the foot was put down that we’re not trying to cram any more into the current papers.