Searches for continuous gravitational waves from nine young supernova remnants

The LIGO Scientific Collaboration is busy analysing the data we’re currently taking with Advanced LIGO at the moment. However, the Collaboration is still publishing results from initial LIGO too. The most recent paper is a search for continuous waves—signals that are an almost constant hum throughout the observations. (I expect they’d be quite annoying for the detectors). Searching for continuous waves takes a lot of computing power (you can help by signing up for Einstein@Home), and is not particularly urgent since the sources don’t do much, hence it can take a while for results to appear.

Supernova remnants

Massive stars end their lives with an explosion, a supernova. Their core collapses down and their outer layers are blasted off. The aftermath of the explosion can be beautiful, with the thrown-off debris forming a bubble expanding out into the interstellar medium (the diffuse gas, plasma and dust between stars). This structure is known as a supernova remnant.

The bubble of a supernova remnant

The youngest known supernova remnant, G1.9+0.3 (it’s just 150 years old), observed in X-ray and optical light. The ejected material forms a shock wave as it pushes the interstellar material out of the way. Credit: NASA/CXC/NCSU/DSS/Borkowski et al.

At the centre of the supernova remnant may be what is left following the collapse of the core of the star. Depending upon the mass of the star, this could be a black hole or a neutron star (or it could be nothing). We’re interested in the case it is a neutron star.

Neutron stars

Neutron stars are incredibly dense. One teaspoon’s worth would have about as much mass as 300 million elephants. Neutron stars are like giant atomic nuclei. We’re not sure how matter behaves in such extreme conditions as they are impossible to replicate here on Earth.

If a neutron star rotates rapidly (we know many do) and has an uneven or if there are waves in the the neutron star that moves lots of material around (like Rossby waves on Earth), then it can emit continuous gravitational waves. Measuring these gravitational waves would tell you about how bumpy the neutron star is or how big the waves are, and therefore something about what the neutron star is made from.

Neutron stars are most likely to emit loud gravitational waves when they are young. This is for two reasons. First, the supernova explosion is likely to give the neutron star a big whack, this could ruffle up its surface and set off lots of waves, giving rise to the sort of bumps and wobbles that emit gravitational waves. As the neutron star ages, things can quiet down, the neutron star relaxes, bumps smooth out and waves dissipate. This leaves us with smaller gravitational waves. Second, gravitational waves carry away energy, slowing the rotation of the neutron star. This also means that the signal gets quieter (and harder) to detect as the  neutron star ages.

Since young neutron stars are the best potential sources, this study looked at nine young supernova remnants in the hopes of finding continuous gravitational waves. Searching for gravitational waves from particular sources is less computationally expensive than searching the entire sky. The search included Cassiopeia A, which had been previously searched in LIGO’s fifth science run, and G1.9+0.3, which is only 150 years old, as discovered by Dave Green. The positions of the searched supernova remnants are shown in the map of the Galaxy below.

Galactic map of supernova remnants

The nine young supernova remnants searched for continuous gravitational waves. The yellow dot marks the position of the Solar System. The green markers show the supernova remnants, which are close to the Galactic plane. Two possible positions for Vela Jr (G266.2−1.2) were used, since we are uncertain of its distance. Original image: NASA/JPL-Caltech/ESO/R. Hurt.

Gravitational-wave limits

No gravitational waves were found. The search checks how well template waveforms match up with the data. We tested that this works by injecting some fake signals into the data.  Since we didn’t detect anything, we can place upper limits on how loud any gravitational waves could be. These limits were double-checked by injecting some more fake signals at the limit, to see if we could detect them. We quoted 95% upper limits, that is where we expect that if a signal was present we could see it 95% of the time. The results actually have a small safety margin built in, so the injected signals were typically found 96%–97% of the time. In any case, we are fairly sure that there aren’t gravitational waves at or above the upper limits.

These upper limits are starting to tell us interesting things about the size of neutron-star bumps and waves. Hopefully, with data from Advanced LIGO and Advanced Virgo, we’ll actually be able to make a detection. Then we’ll not only be able to say that these bumps and waves are smaller than a particular size, but they are this size. Then we might be able to figure out the recipe for making the stuff of neutron stars (I think it might be more interesting than just flour and water).

arXiv: 1412.5942 [astro-ph.HE]
Journal: Astrophysical Journal; 813(1):39(16); 2015
Science summary: Searching for the youngest neutron stars in the Galaxy
Favourite supernova remnant:
 Cassiopeia A

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s