Observing run 1—The papers

The second observing run (O2) of the advanced gravitational wave detectors is now over, which has reminded me how dreadfully behind I am in writing about papers. In this post I’ll summarise results from our first observing run (O1), which ran from September 2015 to January 2016.

I’ll add to this post as I get time, and as papers are published. I’ve started off with papers searching for compact binary coalescences (as these are closest to my own research). There are separate posts on our detections GW150914 (and its follow-up papers: set I, set II) and GW151226 (this post includes our end-of-run summary of the search for binary black holes, including details of LVT151012).

Transient searches

The O1 Binary Neutron Star/Neutron Star–Black Hole Paper

Title: Upper limits on the rates of binary neutron star and neutron-star–black-hole mergers from Advanced LIGO’s first observing run
arXiv: 1607.07456 [astro-ph.HE]
Journal: Astrophysical Journal Letters; 832(2):L21(15); 2016

Our main search for compact binary coalescences targets binary black holes (binaries of two black holes), binary neutron stars (two neutron stars) and neutron-star–black-hole binaries (one of each). Having announced the results of our search for binary black holes, this paper gives the detail of the rest. Since we didn’t make any detections, we set some new, stricter upper limits on their merger rates. For binary neutron stars, this is 12,600~\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1} .

More details: O1 Binary Neutron Star/Neutron Star–Black Hole Paper Paper summary

The O1 Gamma-Ray Burst Paper

Title: Search for gravitational waves associated with gamma-ray bursts during the first Advanced LIGO observing run and implications for the origin of GRB 150906B
arXiv: 1611.07947 [astro-ph.HE]
Journal: Astrophysical Journal; 841(2):89(18); 2016
LIGO science summary: What’s behind the mysterious gamma-ray bursts? LIGO’s search for clues to their origins

Some binary neutron star or neutron-star–black-hole mergers may be accompanied by a gamma-ray burst. This paper describes our search for signals coinciding with observations of gamma-ray bursts (including GRB 150906B, which was potentially especially close by). Knowing when to look makes it easy to distinguish a signal from noise. We don’t find anything, so we we can exclude any close binary mergers as sources of these gamma-ray bursts.

More details: O1 Gamma-Ray Burst Paper summary

The O1 Intermediate Mass Black Hole Binary Paper

Title: Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO
arXiv: 1704.04628 [gr-qc]
Journal: Physical Review D; 96(2):022001(14); 2017
LIGO science summary: Search for mergers of intermediate-mass black holes

Our main search for binary black holes in O1 targeted systems with masses less than about 100 solar masses. There could be more massive black holes out there. Our detectors are sensitive to signals from binaries up to a few hundred solar masses, but these are difficult to detect because they are so short. This paper describes our specially designed such systems. This combines techniques which use waveform templates and those which look for unmodelled transients (bursts). Since we don’t find anything, we set some new upper limits on merger rates.

More details: O1 Intermediate Mass Black Hole Binary Paper summary

The O1 Burst Paper

Title: All-sky search for short gravitational-wave bursts in the first Advanced LIGO run
arXiv: 1611.02972 [gr-qc]
Journal: Physical Review D; 95(4):042003(14); 2017

If we only search for signals for which we have models, we’ll never discover something new. Unmodelled (burst) searches are more flexible and don’t assume a particular form for the signal. This paper describes our search for short bursts. We successfully find GW150914, as it is short and loud, and burst searches are good for these type of signals, but don’t find anything else. (It’s not too surprising GW151226 and LVT151012 are below the threshold for detection because they are longer and quieter than GW150914).

More details: O1 Burst Paper summary

The O1 Binary Neutron Star/Neutron Star–Black Hole Paper

Synopsis: O1 Binary Neutron Star/Neutron Star–Black Hole Paper
Read this if: You want a change from black holes
Favourite part: We’re getting closer to detection (and it’ll still be interesting if we don’t find anything)

The Compact Binary Coalescence (CBC) group target gravitational waves from three different flavours of binary in our main search: binary neutron stars, neutron star–black hole binaries and binary black holes. Before O1, I would have put my money on us detecting a binary neutron star first, around-about O3. Reality had other ideas, and we discovered binary black holes. Those results were reported in the O1 Binary Black Hole Paper; this paper goes into our results for the others (which we didn’t detect).

To search for signals from compact binaries, we use a bank of gravitational wave signals  to match against the data. This bank goes up to total masses of 100 solar masses. We split the bank up, so that objects below 2 solar masses are considered neutron stars. This doesn’t make too much difference to the waveforms we use to search (neutrons stars, being made of stuff, can be tidally deformed by their companion, which adds some extra features to the waveform, but we don’t include these in the search). However, we do limit the spins for neutron stars to less the 0.05, as this encloses the range of spins estimated for neutron star binaries from binary pulsars. This choice shouldn’t impact our ability to detect neutron stars with moderate spins too much.

We didn’t find any interesting events: the results were consistent with there just being background noise. If you read really carefully, you might have deduced this already from the O1 Binary Black Hole Paper, as the results from the different types of binaries are completely decoupled. Since we didn’t find anything, we can set some upper limits on the merger rates for binary neutron stars and neutron star–black hole binaries.

The expected number of events found in the search is given by

\Lambda = R \langle VT \rangle

where R is the merger rate, and \langle VT \rangle is the surveyed time–volume (you expect more detections if your detectors are more sensitive, so that they can find signals from further away, or if you leave them on for longer). We can estimate \langle VT \rangle by performing a set of injections and seeing how many are found/missed at a given threshold. Here, we use a false alarm rate of one per century. Given our estimate for \langle VT \rangle and our observation of zero detections we can, calculate a probability distribution for R using Bayes’ theorem. This requires a choice for a prior distribution of \Lambda. We use a uniform prior, for consistency with what we’ve done in the past.

With a uniform prior, the c confidence level limit on the rate is

\displaystyle R_c = \frac{-\ln(1-c)}{\langle VT \rangle},

so the 90% confidence upper limit is R_{90\%} = 2.30/\langle VT \rangle. This is quite commonly used, for example we make use of it in the O1 Intermediate Mass Black Hole Binary Search. For comparison, if we had used a Jeffrey’s prior of 1/\sqrt{\Lambda}, the equivalent results is

\displaystyle R_c = \frac{\left[\mathrm{erf}^{-1}(c)\right]^2}{\langle VT \rangle},

and hence R_{90\%} = 1.35/\langle VT \rangle, so results would be the same to within a factor of 2, but the results with the uniform prior are more conservative.

The plot below shows upper limits for different neutron star masses, assuming that neutron spins are (uniformly distributed) between 0 and 0.05 and isotropically orientated. From our observations of binary pulsars, we have seen that most of these neutron stars have masses of ~1.35 solar masses, so we can also put a limit of the binary neutron star merger rate assuming that their masses are normally distributed with mean of 1.35 solar masses and standard deviation of 0.13 solar masses. This gives an upper limit of R_{90\%} = 12,100~\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1} for isotropic spins up to 0.05, and R_{90\%} = 12,600~\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1} if you allow the spins up to 0.4.

Upper merger rate limits for binary neutron stars

90% confidence upper limits on the binary neutron star merger rate. These rates assume randomly orientated spins up to 0.05. Results are calculated using PyCBC, one of our search algorithms; GstLAL gives similar results. Figure 4 of the O1 Binary Neutron Star/Neutron Star–Black Hole Paper.

For neutron star–black hole binaries there’s a greater variation in possible merger rates because the black holes can have a greater of masses and spins. The upper limits range from about R_{90\%} = 1,200~\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1} to 3,600~\mathrm{Gpc}^{-3}\,\mathrm{yr}^{-1} for a 1.4 solar mass neutron star and a black hole between 30 and 5 solar masses and a range of different spins (Table II of the paper).

It’s not surprising that we didn’t see anything in O1, but what about in future runs. The plots below compare projections for our future sensitivity with various predictions for the merger rates of binary neutron stars and neutron star–black hole binaries. A few things have changed since we made these projections, for example O2 ended up being 9 months instead of 6 months, but I think we’re still somewhere in the O2 band. We’ll have to see for O3. From these, it’s clear that a detection on O1 was overly optimistic. In O2 and O3 it becomes more plausible. This means even if we don’t see anything, we’ll be still be doing some interesting astrophysics as we can start ruling out some models.

Comparison of merger rates

Comparison of upper limits for binary neutron star (BNS; top) and neutron star–black hole binaries (NSBH; bottom) merger rates with theoretical and observational limits. The blue bars show O1 limits, the green and orange bars show projections for future observing runs. Figures 6 and 7 from the O1 Binary Neutron Star/Neutron Star–Black Hole Paper.

Binary neutron star or neutron star–black hole mergers may be the sources of gamma-ray bursts. These are some of the most energetic explosions in the Universe, but we’re not sure where they come from (I actually find that kind of worrying). We look at this connection a bit more in the O1 Gamma-Ray Burst Paper. The theory is that during the merger, neutron star matter gets ripped apart, squeezed and heated, and as part of this we get jets blasted outwards from the swirling material. There are always jets in these type of things. We see the gamma-ray burst if we are looking down the jet: the wider the jet, the larger the fraction of gamma-ray bursts we see. By comparing our estimated merger rates, with the estimated rate of gamma-ray bursts, we can place some lower limits on the opening angle of the jet. If all gamma-ray bursts come from binary neutron stars, the opening angle needs to be bigger than 2.3_{-1.7}^{+1.7}~\mathrm{deg} and if they all come from neutron star–black hole mergers the angle needs to be bigger than 4.3_{-1.9}^{+3.1}~\mathrm{deg}.

The O1 Gamma-Ray Burst Paper

Synopsis: O1 Gamma-Ray Burst Paper
Read this if: You like explosions. But from a safe distance
Favourite part: We exclude GRB 150906B from being associated with galaxy NGC 3313

Gamma-ray bursts are extremely violent explosions. They come in two (overlapping) classes: short and long. Short gamma-ray bursts are typically shorter than ~2 seconds and have a harder spectrum (more high energy emission). We think that these may come from the coalescence of neutron star binaries. Long gamma-ray bursts are (shockingly) typically longer than ~2 seconds, and have a softer spectrum (less high energy emission). We think that these could originate from the collapse of massive stars (like a supernova explosion). The introduction of the paper contains a neat review of the physics of both these types of sources. Both types of progenitors would emit gravitational waves that could be detected if the source was close enough.

The binary mergers could be picked up by our templated search (as reported in the O1 Binary Neutron Star/Neutron Star–Black Hole Paper): we have a good models for what these signals look like, which allows us to efficiently search for them. We don’t have good models for the collapse of stars, but our unmodelled searches could pick these up. These look for the same signal in multiple detectors, but since they don’t know what they are looking for, it is harder to distinguish a signal from noise than for the templated search. Cross-referencing our usual searches with the times of gamma-ray bursts could help us boost the significance of a trigger: it might not be noteworthy as just a weak gravitational-wave (or gamma-ray) candidate, but considering them together makes it much more unlikely that a coincidence would happen by chance. The on-line RAVEN pipeline monitors for alerts to minimise the chance that miss a coincidence. As well as relying on our standard searches, we also do targeted searches following up on gamma-ray bursts, using the information from these external triggers.

We used two search algorithms:

  • X-Pipeline is an unmodelled search (similar to cWB) which looks for a coherent signal, consistent with the sky position of the gamma-ray burst. This was run for all the gamma-ray bursts (long and short) for which we have good data from both LIGO detectors and a good sky location.
  • PyGRB is a modelled search which looks for binary signals using templates. Our main binary search algorithms check for coincident signals: a signal matching the same template in both detectors with compatible times. This search looks for coherent signals, factoring the source direction. This gives extra sensitivity (~20%–25% in terms of distance). Since we know what the signal looks like, we can also use this algorithm to look for signals when only one detector is taking data. We used this algorithm on all short (or ambiguously classified) gamma-ray bursts for which we data from at least one detector.

In total we analysed times corresponding to 42 gamma-ray bursts: 41 which occurred during O1 plus GRB 150906B. This happening in the engineering run before the start of O1, and luckily Handord was in a stable observing state at the time. GRB 150906B was localised to come from part of the sky close to the galaxy NGC 3313, which is only 54 megaparsec away. This is within the regime where we could have detected a binary merger. This caused much excitement at the time—people thought that this could be the most interesting result of O1—but this dampened down a week later with the detection of GW150914.

GRB 150906B sky location

Interplanetary Network (IPN) localization for GRB 150906B and nearby galaxies. Figure 1 from the O1 Gamma-Ray Burst Paper.

We didn’t find any gravitational-wave counterparts. These means that we could place some lower limits on how far away their sources could be. We performed injections of signals—using waveforms from binaries, collapsing stars (approximated with circular sine–Gaussian waveforms), and unstable discs (using an accretion disc instability model)—to see how far away we could have detected a signal, and set 90% probability limits on the distances (see Table 3 of the paper). The best of these are ~100–200 megaparsec (the worst is just 4 megaparsec, which is basically next door). These results aren’t too interesting yet, they will become more so in the future, and around the time we hit design sensitivity we will start overlapping with electromagnetic measurements of distances for short gamma-ray bursts. However, we can rule out GRB 150906B coming from NGC 3133 at high probability!

The O1 Intermediate Mass Black Hole Binary Paper

Synopsis: O1 Intermediate Mass Black Hole Binary Paper
Read this if: You like intermediate mass black holes (black holes of ~100 solar masses)
Favourite part: The teamwork between different searches

Black holes could come in many sizes. We know of stellar-mass black holes, the collapsed remains of dead stars, which are a few to a few tens of times the mas of our Sun, and we know of (super)massive black holes, lurking in the centres of galaxies, which are tens of thousands to billions of times the mass of our Sun. Between the two, lie the elusive intermediate mass black holes. There have been repeated claims of observational evidence for their existence, but these are notoriously difficult to confirm. Gravitational waves provide a means of confirming the reality of intermediate mass black holes, if they do exist.

The gravitational wave signal emitted by a binary depends upon the mass of its components. More massive objects produce louder signals, but these signals also end at lower frequencies. The merger frequency of a binary is inversely proportional to the total mass. Ground-based detectors can’t detect massive black hole binaries as they are too low frequency, but they can detect binaries of a few hundred solar masses. We look for these in this search.

Our flagship search for binary black holes looks for signals using matched filtering: we compare the data to a bank of template waveforms. The bank extends up to a total mass of 100 solar masses. This search continues above this (there’s actually some overlap as we didn’t want to miss anything, but we shouldn’t have worried). Higher mass binaries are hard to detect as they as shorter, and so more difficult to distinguish from a little blip of noise, which is why this search was treated differently.

As well as using templates, we can do an unmodelled (burst) search for signals by looking for coherent signals in both detectors. This type of search isn’t as sensitive, as you don’t know what you are looking for, but can pick up short signals (like GW150914).

Our search for intermediate mass black holes uses both a modelled search (with templates spanning total masses of 50 to 600 solar masses) and a specially tuned burst search. Both make sure to include low frequency data in their analysis. This work is one of the few cross-working group (CBC for the templated search, and Burst for the unmodelled) projects, and I was pleased with the results.

This is probably where you expect me to say that we didn’t detect anything so we set upper limits. That is actually not the case here: we did detect something! Unfortunately, it wasn’t what we were looking for. We detected GW150914, which was a relief as it did lie within the range we where searching, as well as LVT151012 and GW151226. These were more of a surprise. GW151226 has a total mass of just ~24 solar masses (as measured with cosmological redshift), and so is well outside our bank. It was actually picked up just on the edge, but still, it’s impressive that the searches can find things beyond what they are aiming to pick up. Having found no intermediate mass black holes, we went and set some upper limits. (Yay!)

To set our upper limits, we injected some signals from binaries with specific masses and spins, and then saw how many would have be found with greater significance than our most significant trigger (after excluding GW150914, LVT151012 and GW151226). This is effectively asking the question of when would we see something as significant as this trigger which we think is just noise. This gives us a sensitive time–volume \langle VT \rangle which we have surveyed and found no mergers. We use this number of events to set 90% upper limits on the merge rates R_{90\%} = 2.3/\langle VT \rangle, and define an effective distance D_{\langle VT \rangle} defined so that \langle VT \rangle = T_a (4\pi D_{\langle VT \rangle}^3/3) where T_a is the analysed amount of time. The plot below show our limits on rate and effective distance for our different injections.

Intermediate mass black hole binary search results

Results from the O1 search for intermediate mass black hole binaries. The left panel shows the 90% confidence upper limit on the merger rate. The right panel shows the effective search distance. Each circle is a different injection. All have zero spin, except two 100+100 solar mass sets, where \chi indicates the spin aligned with the orbital angular momentum. Figure 2 of the O1 Intermediate Mass Black Hole Binary Paper.

There are a couple of caveats associated with our limits. The waveforms we use don’t include all the relevant physics (like orbital eccentricity and spin precession). Including everything is hard: we may use some numerical relativity waveforms in the future. However, they should give a good impression on our sensitivity. There’s quite a big improvement compared to previous searches (S6 Burst Search; S6 Templated Search). This comes form the improvement of Advanced LIGO’s sensitivity at low frequencies compared to initial LIGO. Future improvements to the low frequency sensitivity should increase our probability of making a detection.

I spent a lot of time working on this search as I was the review chair. As a reviewer, I had to make sure everything was done properly, and then reported accurately. I think our review team did a thorough job. I was glad when we were done, as I dislike being the bad cop.

The O1 Burst Paper

Synopsis: O1 Burst Paper
Read this if: You like to keep an open mind about what sources could be out there
Favourite part: GW150914 (of course)

The best way to find a signal is to know what you are looking for. This makes it much easier to distinguish a signal from random noise. However, what about the sources for which we don’t have good models? Burst searches aim to find signals regardless of their shape. To do this, they look for coherent signals in multiple detectors. Their flexibility means that they are less sensitive than searches targeting a specific signal—the signal needs to be louder before we can be confident in distinguishing it from noise—but they could potentially detect a wider number of sources, and crucially catch signals missed by other searches.

This paper presents our main results looking for short burst signals (up to a few seconds in length). Complementary burst searches were done as part of the search for intermediate mass black hole binaries (whose signals can be so short that it doesn’t matter too much if you have  a model or not) and for counterparts to gamma-ray bursts.

There are two-and-a-half burst search pipelines. There is coherent WaveBurst (cWB), Omicron–LALInferenceBurst (oLIB), and BayesWave follow-up to cWB. More details of each are found in the GW150914 Burst Companion Paper.

cWB looks for coherent power in the detectors—it looks for clusters of excess power in time and frequency. The search in O1 was split into a low-frequency component (signals below 1024 Hz) and a high-frequency component (1024 Hz). The low-frequency search was further divided into three classes:

  • C1 for signals which have a small range of frequencies (80% of the power in just a 5 Hz range). This is designed to catch blip glitches, short bursts of transient noise in our detectors. We’re not sure what causes blip glitches yet, but we know they are not real signals as they are seen independently in both detectors.
  • C3 looks for signals which increase in frequency with time—chirps. I suspect that this was (cheekily) designed to find binary black hole coalescences.
  • C2 (no, I don’t understand the ordering either) is everything else.

The false alarm rate is calculated independently for each division using time-slides. We analyse data from the two detectors which has been shifted in time, so that there can be no real coincident signals between the two, and compare this background of noise-only triggers to the no-slid data.

oLIB works in two stages. First (the Omicron bit), data from the individual detectors are searches for excess power. If there is anything interesting, the data from both detectors are analysed coherently. We use a sine–Gaussian template, and compare the probability that the same signal is in both detectors, to there being independent noise (potentially a glitch) in the two. This analysis is split too: there is a high-quality factor vs  low quality-factor split, which is similar to cWB’s splitting off C1 to catch narrow band features (the low quality-factor group catches the blip glitches). The false alarm rate is computed with time slides.

BayesWave is run as follow-up to triggers produced by cWB: it is too computationally expensive to run on all the data. BayesWave’s approach is similar to oLIB’s. It compares three hypotheses: just Gaussian noise, Gaussian noise and a glitch, and Gaussian noise and a signal. It constructs its signal using a variable number of sine–Gaussian wavelets. There are no cuts on its data. Again, time slides are used to estimate the false alarm rate.

The search does find a signal: GW150914. It is clearly found by all three algorithms. It is cWB’s C3, with a false alarm rate of less than 1 per 350 years; it is is oLIB’s high quality-factor bin with a false alarm rate of less than 1 per 230 years, and is found by BayesWave with a false alarm rate of less than 1 per 1000 years. You might notice that these results are less stringent than in the initial search results presented at the time of the detection. This is because only a limited number of time slides were done: we could get higher significance if we did more, but it was decided that it wasn’t worth the extra computing time, as we’re already convinced that GW150914 is a real signal. I’m a little sad they took GW150914 out of their plots (I guess it distorted the scale since it’s such an outlier from the background). Aside from GW150914, there are no detections.

Given the lack of detections, we can set some upper limits. I’ll skip over the limits for binary black holes, since our templated search is more sensitive here. The plot below shows limits on the amount of gravitational-wave energy emitted by a burst source at 10 kpc, which could be detected with a false alarm rate of 1 per century 50% of the time. We use some simple waveforms for this calculation. The energy scales with the inverse distance squared, so at a distance of 20 kpc, you need to increase the energy by a factor of 4.

Upper limits on energy at different frequencies

Gravitational-wave energy at 50% detection efficiency for standard sources at a distance of 10 kpc. Results are shown for the three different algorithms. Figure 2 of the O1 Burst Paper.

Maybe next time we’ll find something unexpected, but it will either need to be really energetic (like a binary black hole merger) or really close by (like a supernova in our own Galaxy)

Advertisement

First low frequency all-sky search for continuous gravitational wave signals

It is the time of year for applying for academic jobs and so I have been polishing up my CV. In doing so I spotted that I had missed the publication of one of the LIGO Scientific–Virgo Collaboration papers. In my defence, it was published the week of 8–14 February, which saw the publication of one or two other papers [bonus note]. The paper I was missing is on a search for continuous gravitational waves.

Continuous gravitational waves are near constant hums. Unlike the chirps of coalescing binaries, continuous signals are always on. We think that they could be generated by rotating neutron stars, assuming that they are not perfectly smooth. This is the first search to look for continuous waves from anywhere on the sky with frequencies below 50 Hz. The gravitational-wave frequency is twice the rotational frequency of the neutron star, so this is the first time we’ve looked for neutron stars spinning slower than 25 times per second (which is still pretty fast, I’d certainly feel more than a little queasy). The search uses data from the second and fourth Virgo Science Runs (VSR2 and VSR4): the detector didn’t behave as well in VSR3, which is why that data isn’t used.

The frequency of a rotating neutron star isn’t quite constant for two reasons. First, as the Earth orbits around the Sun it’ll move towards and away from the source. This leads to the signal being Doppler shifted. For a given position on the sky, this can be corrected for, and this is done in the search. Second, the neutron star will slow down (a process known as spin-down) because it looses energy and angular momentum. There are various processes that could slow a neutron star, emitting gravitational waves is one, some form of internal sloshing around is another which could also cause things to speed up, or perhaps some braking from its magnetic field. We’re not too sure exactly how quickly spin down will happen, so we search over a range of possible values from -1.0\times10^{-10}~\mathrm{Hz\,s^{-1}} to +1.5\times10^{-11}~\mathrm{Hz\,s^{-1}}.

The particular search technique used is called FrequencyHough. This chops the detector output into different chunks of time. In each we calculate how much power is at each frequency. We then look for a pattern, where we can spot a signal across different times, allowing for some change from spin-down. Recognising the track of a signal with a consistent frequency evolution is done using a Hough transform, a technique from image processing that is good at spotting lines.

The search didn’t find any signals. This is not too surprising. Therefore, we did the usual thing of setting some upper limits. The plot below shows 90% confidence limits (that is where we’d expect to detect 9/10 signals) on the signal amplitude at different frequencies.

Upper limits at different frequencies

90% confidence upper limits on the gravitational-wave strain at different frequencies. Each dot is for a different 1 Hz band. Some bands are noisy and feature instrumental artefacts which have to be excluded from the analysis, these are noted as the filled (magenta) circles. In this case, the upper limit only applies to the part of the band away from the disturbance. Figure 12 of Aasi et al. (2016).

Given that the paper only reports a non-detection, it is rather lengthy. The opening sections do give a nice introduction to continuous waves and how we hunt for them, so this might be a good paper is you’re new to the area but want to learn some of the details. Be warned that it does use \jmath = \sqrt{-1} for some reason. After the introduction, it does get technical, so it’s probably only for insomniacs. However, if you like a good conspiracy and think we might be hiding something, the appendices go through all the details of removing instrumental noise and checking outliers found by the search.

In summary, this was the first low-frequency search for continuous gravitational waves. We didn’t find anything in the best data from the initial detector era, but the advanced detectors will be much more sensitive to this frequency range. Slowly rotating neutron stars can’t hide forever.

arXiv: 1510.03621 [astro-ph.IM]
Journal: Physical Review D; 93(4):042007(25); 2016
Science summary: First search for low frequency continuous gravitational waves emitted by unseen neutron stars
Greatest regret:
 I didn’t convince the authors to avoid using “air quotes” around jargon.

Bonus note

Better late than never

I feel less guilty about writing a late blog post about this paper as I know that it has been a long time in the making. As a collaboration, we are careful in reviewing our results; this can sometimes lead to delays in announcing results, but hopefully means that we get the right answer. This paper took over three years to review, a process which included over 85 telecons!

Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data

The most recent, and most sensitive, all-sky search for continuous gravitational waves shows no signs of a detection. These signals from rotating neutron stars remain elusive. New data from the advanced detectors may change this, but we will have to wait a while to find out. This at least gives us time to try to figure out what to do with a detection, should one be made.

New years and new limits

The start of the new academic year is a good time to make resolutions—much better than wet and windy January. I’m trying to be tidier and neater in my organisation. Amid cleaning up my desk, which is covered in about an inch of papers, I uncovered this recent Collaboration paper, which I had lost track of.

The paper is the latest in the continuous stream of non-detections of continuous gravitational waves. These signals could come from rotating neutron stars which are deformed or excited in some way, and the hope that from such an observation we could learn something about the structure of neutron stars.

The search uses old data from initial LIGO’s sixth science run. Searches for continuous waves require lots of computational power, so they can take longer than even our analyses of binary neutron star coalescences. This is a semi-coherent search, like the recent search of the Orion spur—somewhere between an incoherent search, which looks for signal power of any form in the detectors, and a fully coherent search, which looks for signals which exactly match the way a template wave evolves [bonus note]. The big difference compared to the Orion spur search, is that this one looks at the entire sky. This makes it less sensitive in those narrow directions, but means we are not excluding the possibility of sources from other locations.

Part of the Galaxy searched

Artist’s impression of the local part of the Milky Way. The yellow cones mark the extent of the Orion Spur spotlight search, and the pink circle shows the equivalent sensitivity of this all-sky search. Green stars indicate known pulsars. Original image: NASA/JPL-Caltech/ESO/R. Hurt.

The search identified 16 outliers, but an examination of all of these showed they could be explained either as an injected signal or as detector noise. Since no signals were found, we can instead place some upper limits on the strength of signals.

The plot below translates the calculated upper limits (above which there would have been a ~75%–95% chance of us detected the signal) into the size of neutron star deformations. Each curve shows the limits on detectable signals at different distance, depending upon their frequency and the rate of change of their frequency. The dotted lines show limits on ellipticity \varepsilon, a measure of how bumpy the neutron star is. Larger deformations mean quicker changes of frequency and produce louder signals, therefore they can can be detected further away.

Limits on detectable signals and ellipticities

Range of the PowerFlux search for rotating neutron stars assuming that spin-down is entirely due to gravitational waves. The solid lines show the upper limits as a function of the gravitational-wave frequency and its rate of change; the dashed lines are the corresponding limits on ellipticity, and the dotted line marks the maximum searched spin-down. Figure 6 of Abbott et al. (2016).

Neutron stars are something like giant atomic nuclei. Figuring the properties of the strange matter that makes up neutron stars is an extremely difficult problem. We’ll never be able to recreate such exotic matter in the laboratory. Gravitational waves give us a rare means of gathering experimental data on how this matter behaves. However, exactly how we convert a measurement of a signal into constraints on the behaviour of the matter is still uncertain. I think that making a detection might only be the first step in understanding the sources of continuous gravitational waves.

arXiv: 1605.03233 [gr-qc]
Journal: Physical Review D; 94(4):042002(14); 2016
Other new academic year resolution:
 To attempt to grow a beard. Beard stroking helps you think, right?

Bonus note

The semi-coherent search

As the first step of this search, the PowerFlux algorithm looks for power that changes in frequency as expected for a rotating neutron star: it factors in Doppler shifting due to the motion of the Earth and a plausible spin down (slowing of the rotation) of the neutron star. As a follow up, the Loosely Coherent algorithm is used, which checks for signals which match short stretches of similar templates. Any candidates to make it through all stages of refinement are then examined in more detail. This search strategy is described in detail for the S5 all-sky search.

Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013

Gravitational waves give us a new way of observing the Universe. This raises the possibility of multimessenger astronomy, where we study the same system using different methods: gravitational waves, light or neutrinos. Each messenger carries different information, so by using them together we can build up a more complete picture of what’s going on. This paper looks for gravitational waves that coincide with radio bursts. None are found, but we now have a template for how to search in the future.

On a dark night, there are two things which almost everyone will have done: wondered at the beauty of the starry sky and wondered exactly what was it that just went bump… Astronomers do both. Transient astronomy is about figuring out what are the things which go bang in the night—not the things which make suspicious noises, but objects which appear (and usually disappear) suddenly in the sky.

Most processes in astrophysics take a looooong time (our Sun is four-and-a-half billion years old and is just approaching middle age). Therefore, when something happens suddenly, flaring perhaps over just a few seconds, you know that something drastic must be happening! We think that most transients must be tied up with a violent event such as an explosion. However, because transients are so short, it can difficult to figure out exactly where they come from (both because they might have faded by the time you look, and because there’s little information to learn from a blip in the first place).

Radio transients are bursts of radio emission of uncertain origin. We’ve managed to figure out that some come from microwave ovens, but the rest do seem to come from space. This paper looks at two types: rotating radio transients (RRATs) and fast radio bursts (FRBs). RRATs look like the signals from pulsars, except that they don’t have the characteristic period pattern of pulsars. It may be that RRATs come from dying pulsars, flickering before they finally switch off, or it may be that they come from neutron stars which are not normally pulsars, but have been excited by a fracturing of their crust (a starquake). FRBs last a few milliseconds, they could be generated when two neutron stars merge and collapse to form a black hole, or perhaps from a highly-magnetised neutron star. Normally, when astronomers start talking about magnetic fields, it means that we really don’t know what’s going on [bonus note]. That is the case here. We don’t know what causes radio transients, but we are excited to try figuring it out.

This paper searches old LIGO, Virgo and GEO data for any gravitational-wave signals that coincide with observed radio transients. We use a catalogue of RRATs and FRBs from the Green Bank Telescope and the Parkes Observatory, and search around these times. We use a burst search, which doesn’t restrict itself to any particular form of gravitational-wave; however, the search was tuned for damped sinusoids and sine–Gaussians (generic wibbles), cosmic strings (which may give an indication of how uncertain we are of where radio transients could come from), and coalescences of binary neutron stars or neutron star–black hole binaries. Hopefully the search covers all plausible options. Discovering a gravitational wave coincident with a radio transient would give us much welcomed information about the source, and perhaps pin down their origin.

Results from search for gravitational waves conicident with radio transients

Search results for gravitational waves coincident with radio transients. The probabilities for each time containing just noise (blue) match the expected background distribution (dashed). This is consistent with a non-detection.

The search discovered nothing. Results match what we would expect from just noise in the detectors. This is not too surprising since we are using data from the first-generation detectors. We’ll be repeating the analysis with the upgraded detectors, which can find signals from larger distances. If we are lucky, multimessenger astronomy will allow us to figure out exactly what needs to go bump to create a radio transient.

arXiv: 1605.01707 [astro-ph.HE]
Journal: Physical Review D; 93(12):122008(14); 2016
Science summary: Searching for gravitational wave bursts in coincidence with short duration radio bursts
Favourite thing that goes bump in the night: Heffalumps and Woozles [probably not the cause of radio transients]

Bonus note

Magnetism and astrophysics

Magnetic fields complicate calculations. They make things more difficult to model and are therefore often left out. However, we know that magnetic fields are everywhere and that they do play important roles in many situations. Therefore, they are often invoked as an explanation of why models can’t explain what’s going on. I learnt early in my PhD that you could ask “What about magnetic fields?” at the end of almost any astrophysics seminar (it might not work for some observational talks, but then you could usually ask “What about dust?” instead). Handy if ever you fall asleep…

Search of the Orion spur for continuous gravitational waves using a loosely coherent algorithm on data from LIGO interferometers

A cloudy bank holiday Monday is a good time to catch up on blogging. Following the splurge of GW150914 papers, I’ve rather fallen behind. Published back in February, this paper is a search for continuous-wave signals: the almost-constant hum produced by rapidly rotating neutron stars.

Continuous-wave searches are extremely computationally expensive. The searches take a while to do, which can lead to a delay before results are published [bonus note]. This is the result of a search using data from LIGO’s sixth science run (March–October 2010).

To detect a continuous wave, you need to sift the data to find a signal that present through all the data. Rotating neutron stars produce a gravitational-wave signal with a frequency twice their orbital frequency. This frequency is almost constant, but could change as the observation goes on because (i) the neutron star slows down as energy is lost (from gravitational waves, magnetic fields or some form of internal sloshing around); (ii) there is some Doppler shifting because of the Earth’s orbit around the Sun, and, possibly, (iii) the there could be some Doppler shifting because the neutron star is orbiting another object. How do you check for something that is always there?

There are two basic strategies for spotting continuous waves. First, we could look for excess power in a particular frequency bin. If we measure something in addition to what we expect from the detector noise, this could be a signal. Looking at the power is simple, and so not too expensive. However, we’re not using any information about what a real signal should look like, and so it must be really loud for us to be sure that it’s not just noise. Second, we could coherently search for signals using templates for the expected signals. This is much more work, but gives much better sensitivity. Is there a way to compromise between the two strategies to balance cost and sensitivity?

This paper reposts results of a loosely coherent search. Instead of checking how well the data match particular frequencies and frequency evolutions, we average over a family of similar signals. This is less sensitive, as we get a bit more wiggle room in what would be identified as a candidate, but it is also less expensive than checking against a huge number of templates.

We could only detect continuous waves from nearby sources: neutron stars in our own Galaxy. (Perhaps 0.01% of the distance of GW150914). It therefore makes sense to check nearby locations which could be home to neutron stars. This search narrows its range to two directions in the Orion spur, our local band with a high concentration of stars. By focussing in on these spotlight regions, we increase the sensitivity of the search for a given computational cost. This search could possibly dig out signals from twice as far away as if we were considering all possible directions.

Part of the Galaxy searched

Artist’s impression of the local part of the Milky Way. The Orion spur connects the Perseus and Sagittarius arms. The yellow cones mark the extent of the search (the pink circle shows the equivalent all-sky sensitivity). Green stars indicate known pulsars. Original image: NASA/JPL-Caltech/ESO/R. Hurt.

The search found 70 interesting candidates. Follow-up study showed that most were due to instrumental effects. There were three interesting candidates left after these checks, none significant enough to be a detection, but still worth looking at in detail. A full coherent analysis was done for these three candidates. This showed that they were probably caused by noise. We have no detections

arXiv: 1510.03474 [gr-qc]
Journal: Physical Review D; 93(4):042006(14); 2016
Science summary: Scouting our Galactic neighborhood
Other bank holiday activities:
 Scrabble

Scrabble board

Bank holiday family Scrabble game. When thinking about your next turn, you could try seeing if your letters match a particular word (a coherent search which would get you the best score, but take ages), or just if your letters jumble together to make something word-like (an incoherent search, that is quick, but may result in lots of things that aren’t really words).

Bonus note

Niceness

The Continuous Wave teams are polite enough to wait until we’re finished searching for transient gravitational-wave signals (which are more time sensitive) before taking up the LIGO computing clusters. They won’t have any proper results from O1 just yet.

All-sky search for long-duration gravitational wave transients with LIGO

It’s now about 7 weeks since the announcement, and the madness is starting to subside. Although, that doesn’t mean things aren’t busy—we’re now enjoying completely new forms of craziness. In mid March we had our LIGO–Virgo Collaboration Meeting. This was part celebration, part talking about finishing our O1 analysis and part thinking ahead to O2, which is shockingly close. It was fun, there was cake.

Gravitational wave detection cake

Celebratory cake from the March LIGO–Virgo Meeting. It was delicious and had a fruity (strawberry?) filling. The image is February 11th’s Astronomy Picture of the Day. There was a second cake without a picture, that was equally delicious, but the queue was shorter.

All the business means that I’ve fallen behind with my posts, and I’ve rather neglected the final paper published the week starting 8 February. This is perhaps rather apt as this paper has the misfortune to be the first non-detection published in the post-detection world. It is also about a neglected class of signals.

Long-duration transients

We look for several types of signals with LIGO (and hopefully soon Virgo and KAGRA):

  • Compact binary coalescences (like two merging black holes), for which we have templates for the signal. High mass systems might only last a fraction of a second within the detector’s frequency range, but low mass systems could last for a minute (which is a huge pain for us to analyse).
  • Continuous waves from rotating neutron stars which are almost constant throughout our observations.
  • Bursts, which are transient signals where we don’t have a good model. The classic burst source is from a supernova explosion.

We have some effective search pipelines for finding short bursts—signals of about a second or less. Coherent Waveburst, which was the first code to spot GW150914 is perhaps the best known example. This paper looks at finding longer burst signals, a few seconds to a few hundred seconds in length.

There aren’t too many well studied models for these long bursts. Most of the potential sources are related to the collapse of massive stars. There can be a large amount of matter moving around quickly in these situations, which is what you want for gravitational waves.

Massive stars may end their life in a core collapse supernova. Having used up its nuclear fuel, the star no longer has the energy to keep itself fluffy, and its core collapses under its own gravity. The collapse leads to an explosion as material condenses to form a neutron star, blasting off the outer layers of the star. Gravitational waves could be generated by the sloshing of the outer layers as some is shot outwards and some falls back, hitting the surface of the new neutron star. The new neutron star itself will start life puffed up and perhaps rapidly spinning, and can generate gravitational waves at it settles down to a stable state—a similar thing could happen if an older neutron star is disturbed by a glitch (where we think the crust readjusts itself in something like an earthquake, but more cataclysmic), or if a neutron star accretes a large blob of material.

For the most massive stars, the core continues to collapse through being a neutron star to become a black hole. The collapse would just produce a short burst, so it’s not what we’re looking for here. However, once we have a black hole, we might build a disc out of material swirling into the black hole (perhaps remnants of the outer parts of the star, or maybe from a companion star). The disc may be clumpy, perhaps because of eddies or magnetic fields (the usual suspects when astrophysicists don’t know exactly what’s going on), and they rapidly inspiralling blobs could emit a gravitational wave signal.

The potential sources don’t involve as much mass as a compact binary coalescence, so these signals wouldn’t be as loud. Therefore we couldn’t see them quite as far way, but they could give us some insight into these messy processes.

The search

The paper looks at results using old LIGO data from the fifth and sixth science runs (S5 and S6). Virgo was running at this time, but the data wasn’t included as it vastly increases the computational cost while only increasing the search sensitivity by a few percent (although it would have helped with locating a source if there were one). The data is analysed with the Stochastic Transient Analysis Multi-detector Pipeline (STAMP); we’ll be doing a similar thing with O1 data too.

STAMP searches for signals by building a spectrogram: a plot of how much power there is at a particular gravitational wave frequency at a particular time. If there is just noise, you wouldn’t expect the power at one frequency and time to be correlated with that at another frequency and time. Therefore, the search looks for clusters, grouping together times or frequencies closer to one another where there is more power then you might expect.

The analysis is cunning, as it coherently analysis data from both detectors together when constructing the spectrogram, folding in the extra distance a gravitational wave must travel between the detectors for a given sky position.

The significance of events is calculated is a similar way to how we search for binary black holes. The pipeline ranks candidates using a detection statistic, a signal-to-noise ratio for the cluster of interesting time–frequency pixels \mathrm{SNR}_\Gamma (something like the amount of power measured divided by the amount you’d expect randomly). We work out how frequently you’d expect a particular value of \mathrm{SNR}_\Gamma by analysing time-shifted data: where we’ve shifted the data from one of the detectors in time relative to data from the other so that we know there can’t be the same signal found in both.

The distribution of \mathrm{SNR}_\Gamma is shown below from the search (dots) and from the noise background (lines). You can see that things are entirely consistent with our expectations for just noise. The most significant event has a false alarm probability of 54%, so you’re better off betting it’s just noise. There are no detections here.

False alarm rate distribution

False alarm rate (FAR) distribution of triggers from S5 (black circles) and S6 (red triangles) as a function of the
signal-to-noise ratio. The background S5 and S6 noise distributions are shown by the solid black and dashed red lines respectively. An idealised Gaussian noise background is shown in cyan. There are no triggers significantly above the expected background level. Fig. 5 from Abbott et al. (2016).

Since the detectors are now much more sensitive, perhaps there’s something lurking in our new data. I still think this in unlikely since we can’t see sources from a significant distance, but I guess we’ll have to wait for the results of the analysis.

arXiv: 1511.04398 [gr-qc]
Journal: Physical Review D; 93(4):042005(19); 2016
Science summary: Stuck in the middle: an all-sky search for gravitational waves of intermediate duration
Favourite (neglected) middle child:
 Lisa Simpson

View from Guano Point

Sunset over the Grand Canyon. One of the perks of academia is the travel. A group of us from Birmingham went on a small adventure after the LIGO–Virgo Meeting. This is another reason why I’ve not been updating my blog.

Searches for continuous gravitational waves from nine young supernova remnants

The LIGO Scientific Collaboration is busy analysing the data we’re currently taking with Advanced LIGO at the moment. However, the Collaboration is still publishing results from initial LIGO too. The most recent paper is a search for continuous waves—signals that are an almost constant hum throughout the observations. (I expect they’d be quite annoying for the detectors). Searching for continuous waves takes a lot of computing power (you can help by signing up for Einstein@Home), and is not particularly urgent since the sources don’t do much, hence it can take a while for results to appear.

Supernova remnants

Massive stars end their lives with an explosion, a supernova. Their core collapses down and their outer layers are blasted off. The aftermath of the explosion can be beautiful, with the thrown-off debris forming a bubble expanding out into the interstellar medium (the diffuse gas, plasma and dust between stars). This structure is known as a supernova remnant.

The bubble of a supernova remnant

The youngest known supernova remnant, G1.9+0.3 (it’s just 150 years old), observed in X-ray and optical light. The ejected material forms a shock wave as it pushes the interstellar material out of the way. Credit: NASA/CXC/NCSU/DSS/Borkowski et al.

At the centre of the supernova remnant may be what is left following the collapse of the core of the star. Depending upon the mass of the star, this could be a black hole or a neutron star (or it could be nothing). We’re interested in the case it is a neutron star.

Neutron stars

Neutron stars are incredibly dense. One teaspoon’s worth would have about as much mass as 300 million elephants. Neutron stars are like giant atomic nuclei. We’re not sure how matter behaves in such extreme conditions as they are impossible to replicate here on Earth.

If a neutron star rotates rapidly (we know many do) and has an uneven or if there are waves in the the neutron star that moves lots of material around (like Rossby waves on Earth), then it can emit continuous gravitational waves. Measuring these gravitational waves would tell you about how bumpy the neutron star is or how big the waves are, and therefore something about what the neutron star is made from.

Neutron stars are most likely to emit loud gravitational waves when they are young. This is for two reasons. First, the supernova explosion is likely to give the neutron star a big whack, this could ruffle up its surface and set off lots of waves, giving rise to the sort of bumps and wobbles that emit gravitational waves. As the neutron star ages, things can quiet down, the neutron star relaxes, bumps smooth out and waves dissipate. This leaves us with smaller gravitational waves. Second, gravitational waves carry away energy, slowing the rotation of the neutron star. This also means that the signal gets quieter (and harder) to detect as the  neutron star ages.

Since young neutron stars are the best potential sources, this study looked at nine young supernova remnants in the hopes of finding continuous gravitational waves. Searching for gravitational waves from particular sources is less computationally expensive than searching the entire sky. The search included Cassiopeia A, which had been previously searched in LIGO’s fifth science run, and G1.9+0.3, which is only 150 years old, as discovered by Dave Green. The positions of the searched supernova remnants are shown in the map of the Galaxy below.

Galactic map of supernova remnants

The nine young supernova remnants searched for continuous gravitational waves. The yellow dot marks the position of the Solar System. The green markers show the supernova remnants, which are close to the Galactic plane. Two possible positions for Vela Jr (G266.2−1.2) were used, since we are uncertain of its distance. Original image: NASA/JPL-Caltech/ESO/R. Hurt.

Gravitational-wave limits

No gravitational waves were found. The search checks how well template waveforms match up with the data. We tested that this works by injecting some fake signals into the data.  Since we didn’t detect anything, we can place upper limits on how loud any gravitational waves could be. These limits were double-checked by injecting some more fake signals at the limit, to see if we could detect them. We quoted 95% upper limits, that is where we expect that if a signal was present we could see it 95% of the time. The results actually have a small safety margin built in, so the injected signals were typically found 96%–97% of the time. In any case, we are fairly sure that there aren’t gravitational waves at or above the upper limits.

These upper limits are starting to tell us interesting things about the size of neutron-star bumps and waves. Hopefully, with data from Advanced LIGO and Advanced Virgo, we’ll actually be able to make a detection. Then we’ll not only be able to say that these bumps and waves are smaller than a particular size, but they are this size. Then we might be able to figure out the recipe for making the stuff of neutron stars (I think it might be more interesting than just flour and water).

arXiv: 1412.5942 [astro-ph.HE]
Journal: Astrophysical Journal; 813(1):39(16); 2015
Science summary: Searching for the youngest neutron stars in the Galaxy
Favourite supernova remnant:
 Cassiopeia A

Directed search for gravitational waves from Scorpius X-1 with initial LIGO

new paper from the LIGO Scientific Collaboration has snuck out. It was actually published back in March but I didn’t notice it, nearly risking my New Year’s resolution. This is another paper on continuous waves from rotating neutron stars, so it’s a little outside my area of expertise. However, there is an official science summary written by people who do know what they’re talking about.

The paper looks at detecting gravitational waves from a spinning neutron star. We didn’t find any. However, we have slightly improved our limit for how loud they need to be before we would have detected them, which is nice.

Neutron stars can rotate rapidly. They can be spun up if they accrete material from a disc orbiting them. If they neutron star has an asymmetry, if it has a little bump, as it rotates it emits gravitational waves. The gravitational waves carry away angular momentum, which should spin down the neutron star. This becomes more effective as the angular velocity increases. At some point you expect that the spin-up effect from accretion balances the spin-down effect of gravitational waves and you are left with a neutron star spinning at pretty constant velocity. We have some evidence that this might happen, as low-mass X-ray binaries seem to have their spins clustered in a small range of frequencies. Assuming we do have this balance, we are looking for a continuous gravitational wave with constant frequency, a rather dull humming.

Scorpius X-1 is the brightest X-ray source in the sky. It contains a neutron star, so it’s a good place to check for gravitational waves from neutron stars. In this case, we’re using data from initial LIGO’s fifth science run (4 November 2005–1 October 2007). This has been done before, but this paper implements some new techniques. I expect that the idea is to test things out ahead of getting data with Advanced LIGO.

X-ray image of Scorpius X-1

Swift X-ray Telescope image of Scorpius X-1 and the X-ray nova J1745-26 (a stellar-mass black hole), along with the scale of moon, as they would appear in the field of view from Earth. Credit: NASA/Goddard Space Flight Center/S. Immler and H. Krimm.

A limit of 10 days’ worth of data is used, as this should be safely within the time taken for the rotational frequency to fluctuate by a noticeable amount due to variation in the amount of accretion. In human terms, that would be the time between lunch and dinner, where your energy levels change because of how much you’ve eaten. They picked data from 21–31 August 2007, as their favourite (it has the best noise performance over the frequency range of interest), and used two other segments to double-check their findings. We’d be able to use more data if we knew how the spin wandered with time.

We already know a lot about Scorpius X-1 from electromagnetic observations (like where it is and its orbital parameters). We don’t know its spin frequency, but we might have an idea about the orientation of its spin if this coincides with radio jets. The paper considers two cases: one where we don’t know anything about the spin orientation, and one where we use information from the jets. The results are similar in both cases.

As the neutron star orbits in its binary system, it moves back and forth which Doppler shifts the gravitational waves. This adds a little interest to the hum, spreading it out over a range of frequencies. The search looks for gravitational waves over this type of frequency range, which they refer to as sidebands.

There are a few events where it looks like there is something, but after carefully checking, these look like they are entirely consistent with noise. I guess this isn’t too surprising. Since they didn’t detect anything, they can only impose an upper limit. This is stronger than the previous upper limit, but only by a factor of about 1.4. This might not sound too great, but the previous analysis used a year of data, whereas this only used 10 days. This method therefore saves a lot on computational time.

The result of the paper is quite nice, but not too exciting. If it were a biscuit, it’d probably be a rich tea. It’s nice to have, but it’s not a custard cream.

arXiv: 1412.5942 [astro-ph.HE]
Journal: Physical Review D; 91(6):062008(20); 2015
Science summary: Combing Initial LIGO Data for the Potentially Strong Continuous Wave Emitter Scorpius X-1
Biscuit rating:
Rich tea

Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data

Collaboration papers

I’ve been a member of the LIGO Scientific Collaboration for just over a year now. It turns out that designing, building and operating a network of gravitational-wave detectors is rather tricky, maybe even harder than completing Super Mario Bros. 3, so it takes a lot of work. There are over 900 collaboration members, all working on different aspects of the project. Since so much of the research is inter-related, certain papers (such as those that use data from the instruments) written by collaboration members have to include the name of everyone who works (at least half the time) on LIGO-related things. After a year in the collaboration, I have now levelled up to be included in the full author list (if there was an initiation ritual, I’ve suppressed the memory). This is weird: papers appear with my name on that I’ve not actually done any work for. It seems sort of like having to bring cake into your office on your birthday: you do have to share your (delicious) cupcakes with everyone else, but in return you get cake even when your birthday is nowhere near. Perhaps all those motivational posters where right about the value of teamwork? I do feel a little guilty about all the extra trees that will die because of people printing out these papers.

My New Year’s resolution was to write a post about every paper I have published. I am going to try to do the LIGO papers too. This should at least make sure that I actually read them all. There are official science summaries written by the people who did actually do the work, which may be better if you actually want an accurate explanation. My first collaboration paper is a joint publication of the LIGO and Virgo collaborations (even more sharing).

Searching for gravitational waves from pulsars

Neutron stars are formed from the cores of dead stars. When a star’s nuclear fuel starts to run out, their core collapses. The most massive form black holes, the lightest (like our Sun) form white dwarfs, and the ones in the middle form neutron stars. These are really dense, they have about the same mass as our entire Sun (perhaps twice the Sun’s mass), but are just a few kilometres across. Pulsars are a type of neutron star, they emit a beam of radiation that sweeps across the sky as they rotate, sort of like a light-house. If one of these beams hits the Earth, we see a radio pulse. The pulses come regularly, so you can work out how fast the pulsar is spinning (and do some other cool things too).

A pulsar

The mandatory cartoon of a pulsar that everyone uses. The top part shows the pulsar and its beams rotating, and the bottom part shows the signal measured on Earth. We not really sure where the beams come from, it’ll be something to do with magnetic fields. Credit: M. Kramer

Because pulsars rotate really quickly, if they have a little bump on their surface, they can emit (potentially detectable) gravitational waves. This paper searches for these signals from the Crab and Vela pulsars. We know where these pulsars are, and how quickly they are rotating, so it’s possible to do a targeted search for gravitational waves (only checking the data for signals that are close to what we expect). Importantly, some wiggle room in the frequency is allowed just in case different parts of the pulsar slosh around at slightly different rates and so the gravitational-wave frequency doesn’t perfectly match what we’d expect from the frequency of pulses; the search is done in a narrow band of frequencies around the expected one. The data used is from Virgo’s fourth science run (VSR4). That was taken back in 2011 (around the time that Captain America was released). The search technique is new (Astone et al., 2014), it’s the first one that incorporates this searching in a narrow band of frequencies; I think the point was to test their search technique on real data before the advanced detectors start producing new data.

Composite Crab

Composite image of Hubble (red) optical observations and Chandra (blue) X-ray observations of the Crab pulsar. The pulsar has a mass of 1.4 solar masses and rotates every 30 ms. Credit: Hester et al.

The pulsars emit gravitational waves continuously, they just keep humming as they rotate. The frequency will slow gradually as the pulsar loses energy. As the Earth rotates, the humming gets louder and quieter because the sensitivity of gravitational-wave detectors depends upon where the source is in the sky. Putting this all together gives you a good template for what the signal should look like, and you can see how well it fits the data. It’s kind of like trying to find the right jigsaw piece by searching for the one that interlocks best with those around it. Of course, there is a lot of noise in our detectors, so it’s like if the jigsaw was actually made out of jelly: you could get many pieces to fit if you squeeze them the right way, but then people wouldn’t believe that you’ve actually found the right one. Some detection statistics (which I don’t particularly like, but probably give a sensible answer) are used to quantify how likely it is that they’ve found a piece that fits (that there is a signal). The whole pipeline is tested by analysing some injected signals (artificial signals made to see if things work made both by adding signals digitally to the data and by actually jiggling the mirrors of the interferometer). It seems to do OK here.

Turning to the actual data, they very carefully show that they don’t think they’ve detected anything for either Vela or Crab. Of course, all the cool kids don’t detect gravitational waves, so that’s not too surprising.

Zoidberg is an expert on crabs, pulsing or otherwise

This paper doesn’t claim a detection of gravitational waves, but it doesn’t stink like Zoidberg.

Having not detected anything, you can place an upper limit of the amplitude of any waves that are emitted (because if they were larger, you would’ve detected them). This amplitude can then be compared with what’s expected from the spin-down limit: the amplitude that would be required to explain the slowing of the pulsar. We know how the pulsars are slowing, but not why; it could be because of energy being lost to magnetic fields (the energy for the beams has to come from somewhere), it could be through energy lost as gravitational waves, it could be because of some internal damping, it could all be gnomes. The spin-down limit assumes that it’s all because of gravitational waves, you couldn’t have bigger amplitude waves than this unless something else (that would have to be gnomes) was pumping energy into the pulsar to keep it spinning. The upper limit for the Vela pulsar is about the same as the spin-down limit, so we’ve not learnt anything new. For the Crab pulsar, the upper limit is about half the spin-down limit, which is something, but not really exciting. Hopefully, doing the same sort of searches with data from the advanced detectors will be more interesting.

In conclusion, the contents of this paper are well described by its title:

  • Narrow-band search: It uses a new search technique that is not restricted to the frequency assumed from timing pulses
  • of continuous gravitational-wave signals: It’s looking for signals from rotating neutron stars (that just keep going) and so are always in the data
  • from Crab and Vela pulsars: It considers two particular sources, so we know where in parameter space to look for signals
  • in Virgo VSR4 data: It uses real data, but from the first generation detectors, so it’s not surprising it doesn’t see anything

It’s probably less fun that eating a jigsaw-shaped jelly, but it might be more useful in the future.

arXiv: 1410.8310 [gr-qc]
Journal: Physical Review D; 91(2):022004(15); 2015
Science summary: An Extended Search for Gravitational Waves from the Crab and Vela Pulsars
Percentage of paper that is author list: ~30%