LIGO Magazine: Issue 7

It is an exciting time time in LIGO. The start of the first observing run (O1) is imminent. I think they just need to sort out a button that is big enough and red enough (or maybe gather a little more calibration data… ), and then it’s all systems go. Making the first direct detection of gravitational waves with LIGO would be an enormous accomplishment, but that’s not all we can hope to achieve: what I’m really interested in is what we can learn from these gravitational waves.

The LIGO Magazine gives a glimpse inside the workings of the LIGO Scientific Collaboration, covering everything from the science of the detector to what collaboration members like to get up to in their spare time. The most recent issue was themed around how gravitational-wave science links in with the rest of astronomy. I enjoyed it, as I’ve been recently working on how to help astronomers look for electromagnetic counterparts to gravitational-wave signals. It also features a great interview with Joseph Taylor Jr., one of the discoverers of the famous Hulse–Taylor binary pulsar. The back cover features an article I wrote about parameter estimation: an expanded version is below.

How does parameter estimation work?

Detecting gravitational waves is one of the great challenges in experimental physics. A detection would be hugely exciting, but it is not the end of the story. Having observed a signal, we need to work out where it came from. This is a job for parameter estimation!

How we analyse the data depends upon the type of signal and what information we want to extract. I’ll use the example of a compact binary coalescence, that is the inspiral (and merger) of two compact objects—neutron stars or black holes (not marshmallows). Parameters that we are interested in measuring are things like the mass and spin of the binary’s components, its orientation, and its position.

For a particular set of parameters, we can calculate what the waveform should look like. This is actually rather tricky; including all the relevant physics, like precession of the binary, can make for some complicated and expensive-to-calculate waveforms. The first part of the video below shows a simulation of the coalescence of a black-hole binary, you can see the gravitational waveform (with characteristic chirp) at the bottom.

We can compare our calculated waveform with what we measured to work out how well they fit together. If we take away the wave from what we measured with the interferometer, we should be left with just noise. We understand how our detectors work, so we can model how the noise should behave; this allows us to work out how likely it would be to get the precise noise we need to make everything match up.

To work out the probability that the system has a given parameter, we take the likelihood for our left-over noise and fold in what we already knew about the values of the parameters—for example, that any location on the sky is equally possible, that neutron-star masses are around 1.4 solar masses, or that the total mass must be larger than that of a marshmallow. For those who like details, this is done using Bayes’ theorem.

We now want to map out this probability distribution, to find the peaks of the distribution corresponding to the most probable parameter values and also chart how broad these peaks are (to indicate our uncertainty). Since we can have many parameters, the space is too big to cover with a grid: we can’t just systematically chart parameter space. Instead, we randomly sample the space and construct a map of its valleys, ridges and peaks. Doing this efficiently requires cunning tricks for picking how to jump between spots: exploring the landscape can take some time, we may need to calculate millions of different waveforms!

Having computed the probability distribution for our parameters, we can now tell an astronomer how much of the sky they need to observe to have a 90% chance of looking at the source, give the best estimate for the mass (plus uncertainty), or even figure something out about what neutron stars are made of (probably not marshmallow). This is the beginning of gravitational-wave astronomy!

Monty and Carla map parameter space

Monty, Carla and the other samplers explore the probability landscape. Nutsinee Kijbunchoo drew the version for the LIGO Magazine.

Threshold concepts, learning and Pokémon

Last academic year I took a course on teaching and learning in higher education. I enjoyed learning some education theory: I could recognise habits (both good and bad) my students and I practised. I wanted to write up some of the more interesting ideas I came across, I’ve been kept busy by other things (such as writing up the assessment for the course), but here’s the first.

Pokémon PhD

My collection of qualifications.

Threshold concepts

Have you ever had that moment when something just clicked? Perhaps you’ve been struggling with a particular topic for a while, then suddenly you understand, you have that eureka moment, and you get a new view on everything. That’s one of the best moments in studying.

Threshold concepts are a particular class of these troublesome concepts that have a big impact on your development. It’s not just that these take work to come to grips with, but that you can’t master a subject until you’ve figured them out. As a teacher, they’re something to watch out for, as these are the areas where students’ progress can be held up and they need extra support.

Being a student is much like being a Pokémon. When you start out, there’s not much you can do. Then you practise and gain experience. This can be difficult, but you level up. (Sadly, as a student you don’t the nice little jingle when you do). After levelling up, things don’t seem so hard, so you can tackle more difficult battles. Every so often you’ll learn a new technique, a new move (hopefully you won’t forget an old one), and now you are even more awesome.

That’s all pretty straightforward. If you keep training, you get stronger. (It does turn out that studying helps you learn).

Mastering a threshold concept is more like evolving. You get a sudden boost to your abilities, and now you can learn moves that you couldn’t before, perhaps you’ve changed type too. Evolving isn’t straightforward. Sometimes all you need to do is keep working and level up; other times you’ll need a particular item, to learn a special move, to hone one particular aspect, or be in the right place at the right time. Some people might assimilate a threshold concept like any other new idea, while others will have to put in extra time and effort. In any case, the end effect is transformative. Congratulations, your Physics Student has evolved into a Physicist!

Do di do dum-di-dum-di-dum!

Educational evolution. Pokémon art by Ken Sugimori.


Every discipline has its own threshold concepts. For example, in Pokémon training there’s the idea that different types of Pokémon are have advantages over others (water is super effective against fire, which is super effective against grass, etc.), so you should pick your Pokémon (and their moves) appropriately. Threshold concepts share certain attributes, they are:

  • Transformative: Once understood they change how you view the subject (or life in general). Understanding Pokémon types changes how you view battles, if you’re going to go up against a gym leader called Lt. Surge, you know to pack some Ground types as they’re good against Electric types. It also now makes sense how Iron Man (obviously a Steel type), can take on Thor (an Electric type) in The Avengers, but gets trashed by some random henchpeople with heat powers (Fire types) in Iron Man 3.
  • Irreversible: Once learnt there’s no changing back. You know you’re going to have a bad time if you’ve only packed Fire types to go explore an underwater cave.
  • Integrative: Having conquered a threshold concept, you can spot connections to other ideas and progress to develop new skills. Once you’ve realised that your beloved Blastoise has a weakness to Electric types, you might consider teaching it Earthquake as a counter. You’ve moved on from just considering the types of Pokémon, to considering their move-sets too. Or you could make sure your team has Ground type, so you can switch out your Blastoise. Now you’re considering the entire composition of your team.
  • Troublesome: Threshold concepts are difficult. They may be conceptually challenging (how do you remember 18 types vs 18 types?), counter-intuitive (why don’t Ghost moves affect Normal types?), or be resisted as they force you to re-evaluate your (deep held) opinions (maybe Gyarados isn’t the best, despite looking ferocious, because it has a double weakness to Electric types, and perhaps using your favourite Snorlax in all situations is a bad idea, regardless of how huggable he is).

Using these criteria, you might be able to think of some threshold concepts in other areas, and possibly see why people have problems with them. For example, it might now make more sense why some people have problems accepting global warming is caused by humans. This is certainly a transformative idea, as it makes you reconsider your actions and those of society, as well as the prospects for future generations, and it is certainly troublesome, as one has to accept that the world can change, that our current lifestyle (and perhaps certain economic activities) is not sustainable, and that we are guilty of damaging our only home. The irreversible nature of threshold concepts might also make people resist coming to terms with them, as they prefer their current state of comfortable innocence.

Loss of Arctic ice over 15 years

National Geographic atlases from 1999 to 2014, showing how Arctic ice has melted. At this rate, ice type Pokémon will be extinct in the wild by the end of the century (they’re already the rarest type). It’s super depressing…


Threshold concepts are key but troublesome concepts within a discipline. If you want to be the very best, you have to master them all. They are so called as they can be thought of as doorways, through which a student must step in order to progress. After moving passed the threshold, they enter a new (larger) room, the next stage in their development. From here, they can continue to the next threshold. Looking back, they also get a new perspective on what they have learnt; they can now see new ways of connecting together old ideas. Students might be hesitant to step through because they are nervous about leaving their current state behind. They might also have problems just because the door is difficult to open. If you are planning teaching, you should consider what threshold concepts you’ll cover, and then how to build your lessons around threshold concepts so no-one gets left behind.

I especially like the idea of threshold concepts, as it shows learning to be made up of a journey through different stages of understanding, rather than building a pile of knowledge. (Education should be more about understanding how to figure out the right answer than knowing what it is). If you’d like to learn more about threshold concepts, I’d recommend browsing the resources compiled by Michael Flanagan of UCL.

BritGrav 15

April was a busy month. Amongst other adventures, I organised the 15th British Gravity (BritGrav) Meeting. This is a conference for everyone involved with research connected to gravitation. I was involved in organising last year’s meeting in Cambridge, and since there were very few fatalities, it was decided that I could be trusted to organise it again. Overall, I think it actually went rather well.

Before I go on to review the details of the meeting, I must thank everyone who helped put things together. Huge thanks to my organisational team who helped with every aspect of the organisation. They did wonderfully, even if Hannah seems to have developed a slight sign-making addiction. Thanks go to Classical & Quantum Gravity and the IOP Gravitational Physics Group for sponsoring the event, and to the College of  Engineering & Physical Sciences’ marketing team for advertising. Finally, thanks to everyone who came along!


BritGrav is a broad meeting. It turns out there’s rather a lot of research connected to gravity! This has both good and bad aspects. On the plus side, you can make connections with people you wouldn’t normally run across and find out about new areas you wouldn’t hear about at a specialist meeting. On the negative side, there can some talks which go straight-over your head (no matter how fast your reaction are). The 10-minute talk format helps a little here. There’s not enough time to delve into details (which only specialists would appreciate) so speakers should stick to giving an overview that is generally accessible. Even in the event that you do get completely lost, it’s only a few minutes until the next talk, so it’s not too painful. The 10-minute time slot also helps us to fit in a large number of talks, to cover all the relevant areas of research.

Open quantum gravitational systems

Slide from Teodora Oniga’s BritGrav 15 talk on gauge invariant quantum gravitational decoherence. There are not enough cats featured in slides on gravitational physics.

I’ve collected together tweets and links from the science talks: it was a busy two days! We started with Chris Collins talking about testing the inverse-square law here at Birmingham. There were a couple more experimental talks leading into a session on gravitational waves, which I enjoyed particularly. I spoke on a soon-to-be published paper, and Birmingham PhDs Hannah Middleton and Simon Stevenson gave interesting talks on what we could learn about black holes from gravitational waves.

Detecting neutron star–black hole binaries

Slides demonstrating the difficulty of detecting gravitational-wave signals from Alex Nielsen’s talk on searching for neutron star–black hole binaries with gravitational waves. Fortunately we don’t do it by eye (although if you flick between the slides you can notice the difference).

In the afternoon, there were some talks on cosmology (including a nice talk from Maggie Lieu on hierarchical modelling) and on the structure of neutron stars. I was especially pleased to see a talk by Alice Harpole, as she had been one of my students at Cambridge (she was always rather good). The day concluded with some numerical relativity and the latest work generating gravitational-waveform templates (more on that later).

The second day was more theoretical, and somewhat more difficult for me. We had talks on modified gravity and on quantum theories. We had talks on the properties of various spacetimes. Brien Nolan told us that everyone should have a favourite spacetime before going into the details of his: McVittie. That’s not the spacetime around a biscuit, sadly, but could describe a black hole in an expanding Universe, which is almost as cool.

The final talks of the day were from the winners of the Gravitational Physics Group’s Thesis Prize. Anna Heffernan (2014 winner) spoke on the self-force problem. This is important for extreme-mass-ratio systems, such as those we’ll hopefully detect with eLISA. Patricia Schmidt (2105 winner) spoke on including precession in binary black hole waveforms. In general, the spins of black holes won’t be aligned with their orbital angular momentum, causing them to precess. The precession modulates the gravitational waveform, so you need to include this when analysing signals (especially if you want to measure the black holes’ spins). Both talks were excellent and showed how much work had gone into the respective theses.

The meeting closed with the awarding of the best student-talk prize, kindly sponsored by Classical & Quantum Gravity. Runners up were Viraj Sanghai and Umberto Lupo. The winner was Christopher Moore from Cambridge. Chris gave a great talk on how to include uncertainty about your gravitational waveform (which is important if you don’t have all the physics, like precession, accurately included) into your parameter estimation: if your waveform is wrong, you’ll get the wrong answer. We’re currently working on building waveform uncertainty into our parameter-estimation code. Chris showed how you can think about this theoretical uncertainty as another source of noise (in a certain limit).

There was one final talk of the day: Jim Hough gave a public lecture on gravitational-wave detection. I especially enjoyed Jim’s explanation that we need to study gravitational waves to be prepared for the 24th century, and hearing how Joe Weber almost got into a fist fight arguing about his detectors (hopefully we’ll avoid that with LIGO). I hope this talk enthused our audience for the first observations of Advanced LIGO later this year: there were many good questions from the audience and there was considerable interest in our table-top Michelson interferometer afterwards. We had 114 people in the audience (one of the better turn outs for recent outreach activities), which I was delighted with.


We had a fair amount of interest in the meeting. We totalled 81 (registered) participants at the meeting: a few more registered but didn’t make it in the end for various reasons and I suspect a couple of Birmingham people sneaked in without registering.

Looking at the attendance in more detail, we can break down the participants by their career-level. One of the aims of BritGrav is to showcase to research of early-career researchers (PhD students and post-docs), so we ask for this information on the registration form. The proportions are shown in the pie-chart below.

Attendance at BritGrav 15 by career level

Proportion of participants at BritGrav 15 by (self-reported) career level.

PhD students make up the largest chunk; there are a few keen individuals who are yet to start a PhD, and a roughly even split between post-docs and permanent staff. We do need to encourage more senior researchers to come along, even if they are not giving talks, so that they can see the research done by others.

We had a total of 50 talks across the two days (including the two thesis-prize talks); the distribution of talks by career level as shown below.

Talks at BritGrav 15 by career level

Proportion of talks at BritGrav 15 by (self-reported) career level. The majority are by PhD students.

PhDs make up an even larger proportion of talks here, and we see that there are many more talks from post-docs than permanent staff members. This is exactly what we’re aiming for! For comparison, at the first BritGrav Meeting only 26% of talks were by PhD students, and 17% of talks were by post-docs. There’s been a radical change in the distribution of talks, shifting from senior to junior, although the contribution by post-docs ends up about the same.

We can also consider at the proportion of participants from different institutions, which is shown below.

Attendance at BritGrav 15 by institution

Proportion of participants at BritGrav 15 by institution. Birmingham, as host, comes out top.

Here, any UK/Ireland institution which has one or no speakers is lumped together under “Other”, all these institutions had fewer than four participants. It’s good to see that we are attracting some international participants: of those from non-UK/Ireland institutions, two are from the USA and the rest are from Europe (France, Germany, The Netherlands and Slovenia). Birmingham makes up the largest chunk, which probably reflects the convenience. The list of top institutions closely resembles the list of institutions that have hosted a BritGrav. This could show that these are THE places for gravitational research in the UK, or possibly that the best advertising for future BritGravs is having been at an institution in the past (so everyone knows how awesome they are). The distribution of talks by institution roughly traces the number of participants, as shown below.

Talks at BritGrav 15 by institution

Proportion of talks at BritGrav 15 by institution.

Again Birmingham comes top, followed by Queen Mary and Southampton. Both of the thesis-prize talks were from people currently outside the UK/Ireland, even though they studied for their PhDs locally. I think we had a good mix of participants, which is one of factors that contributed to the meeting being successful.

I’m pleased with how well everything went at BritGrav 15, and now I’m looking forward to BritGrav 16, which I will not be organising.

Advanced LIGO (the paper)

Continuing with my New Year’s resolution to write a post on every published paper, the start of March see another full author list LIGO publication. Appearing in Classical & Quantum Gravity, the minimalistically titled Advanced LIGO is an instrumental paper. It appears a part of a special focus issue on advanced gravitational-wave detectors, and is happily free to read (good work there). This is The Paper™ for describing how the advanced detectors operate. I think it’s fair to say that my contribution to this paper is 0%.

LIGO stands for Laser Interferometer Gravitational-wave Observatory. As you might imagine, LIGO tries to observe gravitational waves by measuring them with a laser interferometer. (It won’t protect your fencing). Gravitational waves are tiny, tiny stretches and squeezes of space. To detect them we need to measure changes in length extremely accurately. I had assumed that Advanced LIGO will achieve this supreme sensitivity through some dark magic invoked by sacrificing the blood, sweat, tears and even coffee of many hundreds of PhD students upon the altar of science. However, this paper actually shows it’s just really, really, REALLY careful engineering. And giant frickin’ laser beams.

The paper goes through each aspect of the design of the LIGO detectors. It starts with details of the interferometer. LIGO uses giant lasers to measure distances extremely accurately. Lasers are bounced along two 3994.5 m arms and interfered to measure a change in length between the two. In spirit, it is a giant Michelson interferometer, but it has some cunning extra features. Each arm is a Fabry–Pérot etalon, which means that the laser is bounced up and down the arms many times to build up extra sensitivity to any change in length. There are various extra components to make sure that the laser beam is as stable as possible, all in all, there are rather a lot of mirrors, each of which is specially tweaked to make sure that some acronym is absolutely perfect.

Advanced LIGO optical configuration. IT's a bit more complicated than a basic Michelson interferometer.

Fig. 1 from Aasi et al. (2015), the Advanced LIGO optical configuration. All the acronyms have to be carefully placed in order for things to work. The laser beam starts from the left, passing through subsystems to make sure it’s stable. It is split in two to pass into the interferometer arms at the top and right of the diagram. The laser is bounced many times between the mirrors to build up sensitivity. The interference pattern is read out at the bottom. Normally, the light should interfere destructively, so the output is dark. A change to this indicates a change in length between the arms. That could be because of a passing gravitational wave.

The next section deals with all the various types of noise that affect the detector. It’s this noise that makes it such fun to look for the signals. To be honest, pretty much everything I know about the different types of noise I learnt from Space-Time Quest. This is a lovely educational game developed by people here at the University of Birmingham. In the game, you have to design the best gravitational-wave detector that you can for a given budget. There’s a lot of science that goes into working out how sensitive the detector is. It takes a bit of practice to get into it (remember to switch on the laser first), but it’s very easy to get competitive. We often use the game as part of outreach workshops, and we’ve had some school groups get quite invested in the high-score tables. My tip is that going underground doesn’t seem to be worth the money. Of course, if you happen to be reviewing the proposal to build the Einstein Telescope, you should completely ignore that, and just concentrate how cool the digging machine looks. Space-Time Quest shows how difficult it can be optimising sensitivity. There are trade-offs between different types of noise, and these have been carefully studied. What Space-Time Quest doesn’t show, is just how much work it takes to engineer a detector.

The fourth section is a massive shopping list of components needed to build Advanced LIGO. There are rather more options than in Space-Time Quest, but many are familiar, even if given less friendly names. If this section were the list of contents for some Ikea furniture, you would know that you’ve made a terrible life-choice; there’s no way you’re going to assemble this before Monday. Highlights include the 40 kg mirrors. I’m sure breaking one of those would incur more than seven years bad luck. For those of you playing along with Space-Time Quest at home, the mirrors are fused silica. Section 4.8.4 describes how to get the arms to lock, one of the key steps in commissioning the detectors. The section concludes with details of how to control such a complicated instrument, the key seems to be to have so many acronyms that there’s no space for any component to move in an unwanted way.

The paper closes with on outlook for the detector sensitivity. With such a complicated instrument it is impossible to be certain how things will go. However, things seem to have been going smoothly so far, so let’s hope that this continues. The current plan is:

  • 2015 3 months observing at a binary neutron star (BNS) range of 40–80 Mpc.
  • 2016–2017 6 months observing at a BNS range of 80–120 Mpc.
  • 2017–2018 9 months observing at a BNS range of 120–170 Mpc.
  • 2019 Achieve full sensitivity of a BNS range of 200 Mpc.

The BNS range is the distance at which a typical binary made up of two 1.4 solar mass neutrons stars could be detected when averaging over all orientations. If you have a perfectly aligned binary, you can detect it out to a further distance, the BNS horizon, which is about 2.26 times the BNS range. There are a couple of things to note from the plan. First, the initial observing run (O1 to the cool kids) is this year! The second is how much the range will extend before hitting design sensitivity. This should significantly increase the number of possible detections, as each doubling of the range corresponds to a volume change of a factor of eight. Coupling this with the increasing length of the observing runs should mean that the chance of a detection increases every year. It will be an exciting few years for Advanced LIGO.

arXiv: 1411.4547 [gr-qc]
Journal: Classical & Quantum Gravity; 32(7):074001(41); 2015
Science summary: Introduction to LIGO & Gravitational Waves
Space-Time Quest high score: 34.859 Mpc

Narrow-band search of continuous gravitational-wave signals from Crab and Vela pulsars in Virgo VSR4 data

Collaboration papers

I’ve been a member of the LIGO Scientific Collaboration for just over a year now. It turns out that designing, building and operating a network of gravitational-wave detectors is rather tricky, maybe even harder than completing Super Mario Bros. 3, so it takes a lot of work. There are over 900 collaboration members, all working on different aspects of the project. Since so much of the research is inter-related, certain papers (such as those that use data from the instruments) written by collaboration members have to include the name of everyone who works (at least half the time) on LIGO-related things. After a year in the collaboration, I have now levelled up to be included in the full author list (if there was an initiation ritual, I’ve suppressed the memory). This is weird: papers appear with my name on that I’ve not actually done any work for. It seems sort of like having to bring cake into your office on your birthday: you do have to share your (delicious) cupcakes with everyone else, but in return you get cake even when your birthday is nowhere near. Perhaps all those motivational posters where right about the value of teamwork? I do feel a little guilty about all the extra trees that will die because of people printing out these papers.

My New Year’s resolution was to write a post about every paper I have published. I am going to try to do the LIGO papers too. This should at least make sure that I actually read them all. There are official science summaries written by the people who did actually do the work, which may be better if you actually want an accurate explanation. My first collaboration paper is a joint publication of the LIGO and Virgo collaborations (even more sharing).

Searching for gravitational waves from pulsars

Neutron stars are formed from the cores of dead stars. When a star’s nuclear fuel starts to run out, their core collapses. The most massive form black holes, the lightest (like our Sun) form white dwarfs, and the ones in the middle form neutron stars. These are really dense, they have about the same mass as our entire Sun (perhaps twice the Sun’s mass), but are just a few kilometres across. Pulsars are a type of neutron star, they emit a beam of radiation that sweeps across the sky as they rotate, sort of like a light-house. If one of these beams hits the Earth, we see a radio pulse. The pulses come regularly, so you can work out how fast the pulsar is spinning (and do some other cool things too).

A pulsar

The mandatory cartoon of a pulsar that everyone uses. The top part shows the pulsar and its beams rotating, and the bottom part shows the signal measured on Earth. We not really sure where the beams come from, it’ll be something to do with magnetic fields. Credit: M. Kramer

Because pulsars rotate really quickly, if they have a little bump on their surface, they can emit (potentially detectable) gravitational waves. This paper searches for these signals from the Crab and Vela pulsars. We know where these pulsars are, and how quickly they are rotating, so it’s possible to do a targeted search for gravitational waves (only checking the data for signals that are close to what we expect). Importantly, some wiggle room in the frequency is allowed just in case different parts of the pulsar slosh around at slightly different rates and so the gravitational-wave frequency doesn’t perfectly match what we’d expect from the frequency of pulses; the search is done in a narrow band of frequencies around the expected one. The data used is from Virgo’s fourth science run (VSR4). That was taken back in 2011 (around the time that Captain America was released). The search technique is new (Astone et al., 2014), it’s the first one that incorporates this searching in a narrow band of frequencies; I think the point was to test their search technique on real data before the advanced detectors start producing new data.

Composite Crab

Composite image of Hubble (red) optical observations and Chandra (blue) X-ray observations of the Crab pulsar. The pulsar has a mass of 1.4 solar masses and rotates every 30 ms. Credit: Hester et al.

The pulsars emit gravitational waves continuously, they just keep humming as they rotate. The frequency will slow gradually as the pulsar loses energy. As the Earth rotates, the humming gets louder and quieter because the sensitivity of gravitational-wave detectors depends upon where the source is in the sky. Putting this all together gives you a good template for what the signal should look like, and you can see how well it fits the data. It’s kind of like trying to find the right jigsaw piece by searching for the one that interlocks best with those around it. Of course, there is a lot of noise in our detectors, so it’s like if the jigsaw was actually made out of jelly: you could get many pieces to fit if you squeeze them the right way, but then people wouldn’t believe that you’ve actually found the right one. Some detection statistics (which I don’t particularly like, but probably give a sensible answer) are used to quantify how likely it is that they’ve found a piece that fits (that there is a signal). The whole pipeline is tested by analysing some injected signals (artificial signals made to see if things work made both by adding signals digitally to the data and by actually jiggling the mirrors of the interferometer). It seems to do OK here.

Turning to the actual data, they very carefully show that they don’t think they’ve detected anything for either Vela or Crab. Of course, all the cool kids don’t detect gravitational waves, so that’s not too surprising.

Zoidberg is an expert on crabs, pulsing or otherwise

This paper doesn’t claim a detection of gravitational waves, but it doesn’t stink like Zoidberg.

Having not detected anything, you can place an upper limit of the amplitude of any waves that are emitted (because if they were larger, you would’ve detected them). This amplitude can then be compared with what’s expected from the spin-down limit: the amplitude that would be required to explain the slowing of the pulsar. We know how the pulsars are slowing, but not why; it could be because of energy being lost to magnetic fields (the energy for the beams has to come from somewhere), it could be through energy lost as gravitational waves, it could be because of some internal damping, it could all be gnomes. The spin-down limit assumes that it’s all because of gravitational waves, you couldn’t have bigger amplitude waves than this unless something else (that would have to be gnomes) was pumping energy into the pulsar to keep it spinning. The upper limit for the Vela pulsar is about the same as the spin-down limit, so we’ve not learnt anything new. For the Crab pulsar, the upper limit is about half the spin-down limit, which is something, but not really exciting. Hopefully, doing the same sort of searches with data from the advanced detectors will be more interesting.

In conclusion, the contents of this paper are well described by its title:

  • Narrow-band search: It uses a new search technique that is not restricted to the frequency assumed from timing pulses
  • of continuous gravitational-wave signals: It’s looking for signals from rotating neutron stars (that just keep going) and so are always in the data
  • from Crab and Vela pulsars: It considers two particular sources, so we know where in parameter space to look for signals
  • in Virgo VSR4 data: It uses real data, but from the first generation detectors, so it’s not surprising it doesn’t see anything

It’s probably less fun that eating a jigsaw-shaped jelly, but it might be more useful in the future.

arXiv: 1410.8310 [gr-qc]
Journal: Physical Review D; 91(2):022004(15); 2015
Science summary: An Extended Search for Gravitational Waves from the Crab and Vela Pulsars
Percentage of paper that is author list: ~30%

Gravitational-wave sensitivity curves

Differing weights and differing measures—
the LORD detests them both. — Proverbs 20:10

As a New Year’s resolution, I thought I would try to write a post on each paper I have published. (I might try to go back and talk about my old papers too, but that might be a little too optimistic.)  Handily, I have a paper that was published in Classical & Quantum Gravity on Thursday, so let’s get on with it, and hopefully 2015 will deliver those hoverboards soon.

This paper was written in collaboration with my old officemates, Chris Moore and Rob Cole, and originates from my time in Cambridge. We were having a weekly group meeting (surreptitiously eating cake—you’re not meant to eat in the new meeting rooms) and discussing what to do for the upcoming open afternoon. Posters are good as you can use them to decorate your office afterwards, so we decided on making one on gravitational-wave astronomy. Gravitational waves come in a range of frequencies, just like light (electromagnetic radiation). You can observe different systems with different frequencies, but you need different instruments to do so. For light, the range is from high frequency gamma rays (observed with satellites like Fermi) to low frequency radio waves (observed with telescopes like those at Jodrell Bank or Arecibo), with visible light (observed with Hubble or your own eyes) in the middle. Gravitational waves also have a spectrum, ground-based detectors like LIGO measure the higher frequencies, pulsar timing arrays measure the lower frequencies, and space-borne detectors like eLISA measure stuff in the middle. We wanted a picture that showed the range of each instrument and the sources they could detect, but we couldn’t find a good up-to-date one. Chris is not one to be put off by a challenge (especially if it’s a source of procrastination), so he decided to have a go at making one himself. How hard could it be? We never made that poster, but we did end up with a paper.

When talking about gravitational-wave detectors, you normally use a sensitivity curve. This shows how sensitive it is at a given frequency: you plot a graph with the sensitivity curve on, and then plot the spectrum of the source you’re interested in on the same graph. If your source is above the sensitivity curve, you can detect it (yay), but if it lies below it, then you can’t pick it out from the noise (boo). Making a plot with lots of sensitivity curves on sounds simple: you look up the details for lots of detectors, draw them together and add a few sources. However, there are lots of different conventions for how you actually measure sensitivity, and they’re frequently muddled up! We were rather confused by the whole thing, but eventually (after the open afternoon had flown by), we figured things out and made our picture. So we wouldn’t forget, we wrote up the different conventions, why you might want to use each, and how to convert between them; these notes became the paper. We also thought it would be handy to have a website where you could make your own plot, picking which detectors and sources you wanted to include. Rob also likes a challenge (especially if it’s a source of procrastination), so he set about making such a thing. I think it turned out rather well!

That’s the story of the paper. It explains different conventions for characterising gravitational-wave detectors and sources, and gives some examples. If you’d actually like to know some of the details, I’ll give a little explanation now, if not, just have a look at the pretty plots below (or, if looking for your own source of procrastination, have a go at Space Time Quest, a game where you try to build the most sensitive detector).

There are three common conventions in use for sensitivity-curve plots: the characteristic strain, the amplitude spectral density and the energy density.

You might wonder why we don’t just directly use the amplitude of the wave? Gravitational waves are a stretching and squashing of spacetime, so you can characterise how much they stretch and squeeze things and use that to describe the size of your waves. The sensitivity of your detector is then how much various sources of noise cause a similar wibbling. The amplitude of the wave is really, really small, so it’s difficult to detect, but if you were to consider observations over a time interval instead of just one moment, it’s easier to spot a signal: hints that there might be a signal add up until you’re certain that it’s there. The characteristic strain is a way of modifying the amplitude to take into account how we add up the signal. It’s especially handy, as if you make a log–log plot (such that the space between 1 and 10 is the same as between 10 and 100, etc.), then the area between the characteristic strain of your source and the detector sensitivity curve gives you a measure of the signal-to-noise ratio, a measure of how loud (how detectable) a signal is.

Characteristic strain plot

Gravitational-wave sensitivity-curve plot using characteristic strain. The area between the detector’s curve and the top of the box for a source indicates how loud that signal would be.

The characteristic strain is handy for quickly working out how loud a signal is, but it’s not directly related to anything we measure. The noise in a detector is usually described by its power spectral density or PSD. This tells you how much wibbling there is on average. Actually, it tells you the average amount of wibbling squared. The square root of the PSD is the amplitude spectral density or ASD. This gives a handy indication of the sensitivity of your detector, which is actually related to what you measure.

ASD plot

Gravitational-wave sensitivity-curve plot using the square root of the power spectral density (the amplitude spectral density).

The PSD is tied to the detector, but isn’t too relevant to the actual waves. An interesting property of the waves is how much energy they carry. We talk about this in terms of the energy density, the energy per unit volume. Cosmologists love this, and to make things easy for themselves, they like to divide energy densities by the amount that would make the Universe flat. (If you’ve ever wondered what astrophysicists mean when they say the Universe is about 70% dark energy and about 25% dark matter, they’re using these quantities). To make things even simpler, they like to multiply this quantity by something related to the Hubble constant (which measures the expansion rate of the Universe), as this means things don’t change if you tweak the numbers describing how the Universe evolves. What you’re left with is a quantity \Omega h_{100}^2 that is really convenient if you’re a cosmologist, but a pain for anyone else. It does have the advantage of making the pulsar timing arrays look more sensitive though.

Energy density plot

Gravitational-wave sensitivity-curve plot using the energy density that cosmologists love. The proper name of the plotted quantity is the critical energy density per logarithmic frequency interval multiplied by the reduced Hubble constant squared. I prefer Bob.

We hope that the paper will be useful for people (like us), who can never remember what the conventions are (and why). There’s nothing new (in terms of results) in this paper, but I think it’s the first time all this material has been collected together in one place. If you ever need to make a poster about gravitational waves, I know where you can find a good picture.

arXiv: 1408.0740 [gr-qc]
Journal: Classical & Qunatum Gravity32(1):015014(25); 2015
Website: Gravitational Wave Sensitivity Curve Plotter
Procrastination score: TBC


12 Astronomy Highlights of Christmas

I regularly help out with Astronomy in the City here at the University. Our most recent event was a Christmas special, and we gave a talk on 12 festive highlights covering events past, present and future, somewhat biased towards our research interests. Here is our count-down again.

A Newton under an apple tree

Isaac Newton, arguably the greatest physicist of all time, was born on 25 December 1642. I expect he may have got many joint birthday–Christmas presents. Newton is most famous for his theory of gravity, which he allegedly thought up after being hit on the head by a falling apple. Realising that the same force could be responsible for mundane things like falling as for keeping celestial bodies such as the planets in their orbits, was a big leap (or fall?). Netwon’s theory of gravity is highly successful, it’s accurate enough to get us to the Moon (more on that later) and only breaks down for particularly strong gravitational fields. That’s when you need Einstein’s theory of general relativity.

The Dark Side of the Moon

Newton may have been a Pink Floyd fan, we may never know.

Newton also did much work on optics. He nearly blinded himself while prodding his eye to see how that would affect his sight. Even smart people do stupid things. Newton designed the first practical reflecting telescope. Modern astronomical telescopes are reflecting (using a mirror to focus light) rather than refracting (using a lens). The first telescope installed at the University’s Observatory was a Newtonian reflector.

Newton's reflecting telescope

Newton’s reflecting telescope, one of the treasures of the Royal Society. Newton was President of the Royal Society, as well as Master of the Royal Mint, Member of Parliament for University of Cambridge and Lucasian Professor of Mathematics. It’s surprising he had any time for alchemy.

2 clear nights

At Astronomy in the City, we have talks on the night sky and topics in astrophysics, a question and answer session, plus some fun activities after to accompany tea and biscuits. There’s also the chance to visit the Observatory and (if it’s clear) use the Astronomical Society’s telescopes. Since the British weather is so cooperative, we only had two clear observing nights from this year’s events (prior to the December one, which was clear).

If you had made one of the clear nights, you could have viewed the nebulae M78 and M42, or Neptune and its moons. Neptune, being one of the ice giants, is a good wintry subject for a Christmas talk. It’s pretty chilly, with the top of its atmosphere being −218 °C. You don’t have a white Christmas on Neptune though. It’s blue colouring is due to methane, which with ammonia (and good old water) makes up what astronomers call ices (I guess you should be suspicious of cocktails made by astronomers).

One of the most exciting views of the year was supernova 2014J, back in January. This was first spotted by students at University College London (it was cloudy here at the time). It’s located in nearby galaxy M82, and we got some pretty good views of it. You can see it out-shine its entire host galaxy. Supernovae are pretty bright!


Supernova 2014J in M82. Image from the University of Birmingham Observatory.

3 components of a cluster

Galaxy clusters are big. They are the largest gravitationally-bound objects in the Universe. They are one of astrophysical objects that we’re particularly interested in here at Birmingham, so they’ll pop up a few times in this post.

Galaxy clusters have three main components. Like trifles. Obviously there are the galaxies, which we can see because they are composed of stars. Around the galaxies there is lots of hot gas. This is tens of millions of degrees and we can spot it because it emits X-rays. Don’t put this in your trifles at home. The final component is dark matter, the mysterious custard of our trifle. We cannot directly see the dark matter (that’s why it’s dark), but we know its there because of the effects of its gravity. We can map out its location using gravitational lensing: the bending of light by gravity, one of the predictions of general relativity.

Different views of cluster Abell 209

Different views of cluster Abell 209. The bottom right is a familiar optical image. Above that is a smoothed map of infra-red luminosity (from old stars). The top left is a map of the total mass (mostly due to dark matter) as measured with gravitational lensing. The bottom left is a X-ray map of the hot intergalactic gas. Credit: Subaru/UKIRT/Chandra/University of Birmingham/Nordic Optical Telescope/University of Hawaii.

Measuring the dark matter is tricky, but some of the work done in Birmingham this year shows that is closely follows the infra-red emission. You can use the distribution of jelly in your trifle to estimate how much custard there should be. In the picture above of galaxy cluster Abell 209, you can see how similar the top two images are. Using the infra-red could be a handy way of estimating the amount of dark matter when you don’t have access to gravitational-lensing measurements.

4 km long laser arms

A highlight for next year: the first observing run of Advanced LIGO. Advanced LIGO is trying to make the first direct detection of gravitational waves. Gravitational waves are tiny stretches and squeezes in spacetime, to detect them you need to very carefully measure the distance between two points. This is where the 4 km arms come in: the Advanced LIGO detectors bounce lasers up and down their arms to measure the distance between the mirrors at the ends. The arms need to be as long as possible to make measuring the change in length as easy as possible. A typical change in length may be one part in 1021 (that is 1,000,000,000,000,000,000,000 or one sextillion… ). For comparison, that’s the same as measuring the distance between the Earth and the Sun to the diameter of a hydrogen atom or the distance from here to Alpha Centuri to the width of a human hair.

LIGO Livingston, Louisiana

Aerial shot of LIGO Livingston, Louisiana. Two arms come out from the central building, one goes up the middle of the picture, the other goes off to the left out of shot. I think this gives a fair indication of the scale of the detectors. In addition to the instruments in Livingston, there is another LIGO in Hanford, Washington.

Making such an precise instrument is tricky. At least twice as tricky as remembering the names of all seven of the dwarfs. We shouldn’t be Bashful about saying how difficult it is. We need to keep the mirrors extremely still, any little wibbles from earth tremors, nearby traffic, or passing clouds need to be filtered out. Lots of clever Docs have been working on cunning means of keeping the mirrors still and then precisely measuring their position with the lasers. Some of that work was done here in Birmingham, in particular some of the mirror suspension systems. We’ll be rather Grumpy if those don’t work. However, things seem to be going rather well. Getting the mirrors working isn’t as simple as pushing a big red button, so it takes a while. On the 3 December, which is when we gave this talk at Astronomy in the City, the second detector achieved its first full lock: lock is when the mirrors are correctly held stably in position. This made me Happy. Also rather Sleepy, as it was a late night.

Inspection of LIGO optical systems.

Team inspecting the optical systems at LIGO Livingston back at the start of 2014. (It’s a bit harder to detect the systems now, since they’re in a vacuum). You need to wear masks in case you are Sneezy, you’d feel rather Dopey if you ruined the mirrors by sneezing all over them. Credit: Michael Fyffe

5 (or more) planet-forming rings!

ALMA image of the planet-forming disc around HL Tau.

ALMA image of the young star HL Tau and its protoplanetary disc. The gaps in the disc indicate the formation of planets that sweep their orbits clear of dust and gas. Credit: ALMA, C. Brogan & B. Saxton

One of the most exciting discoveries of 2014 is this remarkable image of a planet-forming disc.There may be more than five planets, but it seemed like a shame not to fit this into our countdown here. The image is of the star HL Tauri. This is a young star, only a million years old (our Sun is about 4.6 billion years old). Remarkably, even at this young age, there seems to be indication of the formation of planets. The gaps are where planets have sucked up the dust, gas and loose change of the disc. This is the first time we’ve seen planet-formation in such detail, and matches predictions extremely well.

6 Frontier Fields

The six Frontier Fields are a group of six galaxy clusters that are being studied in unprecedented detail. They are being observing with three of NASA’s great observatories, the Hubble Space Telescope, the Spitzer Space Telescope (which observes in the infra-red) and the Chandra X-ray Observatory. These should allow us to measure all three components of the clusters (even the custard of the trifle). The clusters are all selected because the show strong gravitational lensing. This should give us excellent measurements of the mass of the clusters, and hence the distribution of dark matter.

Gravitational lensing by a galaxy cluster.

Gravitational lensing by a galaxy cluster. The mass of the galaxy cluster bends spacetime. Light travelling through this curved spacetime is bent, just like passing through a lens. The amount of bending depends upon the mass, so we can weigh galaxy clusters by measuring the lensing. Credit: NASA, ESA & L. Calcada.

7 months until New Horizons reaches Pluto

New Horizons is a planetary mission to Pluto (and beyond). Launched in January 2006, New Horizons has been travelling through the Solar System ever since. In 2007 it made a fly-by of Jupiter, taking some amazing pictures. It is now just 7 months from reaching Pluto. This will give us the first ever detailed look at Pluto and its moons. You’ll need to wrap up warm if you wanted to head there yourself. I hope that New Horizons packed some mittens. New Horizons will tell us about Pluto and other icy (yes, that’s astronomers’ definition of ice again) items in the Kuiper belt.

Full trajectory of New Horizons

Full trajectory of New Horizons, it’s come a long way! Credit: John Hopkins

New Horizons has been in hibernation for much of its flight. Who doesn’t like a good nap? New Horizons was woken up ahead of arriving at Pluto on 7 December. It got a special wake-up call from Russell Watson. I don’t think it has access to coffee though.

800 TB of data

This year’s Interstellar featured the most detailed simulations of the appearance of black holes. This involved a truly astounding amount of data. I’ve previously written about some of the science in Interstellar. I think it’s done a good at getting people interested in the topic of gravity. It’s scientific accuracy can be traced to the involvement of Kip Thorne, who has written a book on the film’s science (which might be a good Christmas present). Kip has done many things during his career, including being one of the pioneers of LIGO. After an exciting 2014 with the release of Interstellar, I’m sure he’s looking forward to 2015 and the first observations of Advanced LIGO too.

Black hole and light bending

Light-bending around the black hole Gargantua in Interstellar. This shows the accretion disc about the black hole, the disc seen above and below the hole are actually the top and bottom of the disc behind the black hole. This extreme light-bending is a consequence of the extremely curved spacetime close to the black hole. This light-bending is exactly the same as the gravitational-lensing done by galaxy clusters, except much stronger!

999 Kepler exoplanets

When we gave the talk on 3 December, Kepler had discovered 998 exoplanets. It’s now 999, which I think means we get all the bonus points! Kepler is still doing good science, despite some technical difficulties. Kepler has been hugely successful. We now know that planets (as well as forming in quite short times) are common, that they are pretty much everywhere. Possibly even down the back of the sofa. Some of the work done here in Birmingham has been to estimate just how common planets are. On average, stars similar to the Sun have around 4 planets with periods shorter than 3 years (and radii bigger than 20% of Earth’s). That’s quite a few planets! But, if Christopher Nolan wants to direct another reasonably accurate sci-fi, we need to know how many of those are Earth-like. We don’t have enough data to work out details of atmospheres, but just looking at how many planets have a radius and period about the same as Earth’s, it seems that about 4% of these stars have Earth-like planets.

Kepler-186, a system which has a planet on the edge of the habitable zone.

Kepler-186, the first system discovered with an Earth-sized planet on the edge of the habitable zone (where liquid water could exist), was discovered in 2014.

10 lunar orbits

A Christmas highlight from 1968. On December 21, Apollo 8 launched. This was the first manned mission to ever leave Earth orbit. On Christmas Eve, it entered into orbit about the Moon. It’s three-man crew of Frank Borman, James Lovell and William Anders were the first people ever to orbit a body other than the Earth. To date, only 24 men have ever done so. Of course, even fewer have actually walked on the Moon, perhaps we should go back? Jim Lovell was also on the ill-fated Apollo 13 mission (you may have seen the film), making him the only person to orbit the Moon on two separate occasions and never land. Apollo 8 was successful, it orbited the Moon 10 times, giving us the first ever peek at the dark side of the moon (not the Pink Floyd album). This was also the first viewing of an Earthrise. Their Christmas Eve broadcast was most watched TV broadcast at the time. After orbiting, Apollo 8 returned home, splashing down December 27. I’m guessing they had a good New Year’s celebration!


Earthrise taken by the crew of Apollo 8, Christmas Eve 1968. Credit: NASA

11 (10 ¾) years for Rosetta

This year we landed on a comet. Rosetta has received fair amount of press. It is an amazing feat, Rosetta was in space for almost 11 years before making its comet rendezvous. It’ll be doing lots of science form orbit, such as determining that comets are unlikely to have delivered water to Earth. Most of the excitement surrounded the landing of Philae on the surface of the comet. That didn’t go quite as planned, but still taught us quite a bit. Rosetta has been heralded as one of the science breakthroughs of 2014. We’ll have to see what 2015 brings.

Colour image of a comet

Colour image (yes, it’s grey) of 67P/Churyumov-Gerasimenko from Rosetta. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

12 (or more) galaxies in a cluster

To finish up, back to galaxy clusters. Galaxy clusters grow by merging. We throw two trifles together to get a bigger one. As you might imagine, if you throw two triffles together, you don’t get a nice, neat trifle. The layers do tend to mix. For galaxy clusters, you can get layers separating out: dark matter passes freely through everything, so it isn’t affected by a collision. The gas, however, does feel the shock and ends up a turbulent mess. It has been suggested that turbulence caused by mergers could trigger star formation: you squeeze the gas and some of it collapses down into stars. However, recent observational work at Birmingham can’t find any evidence for this. We’ll have to see if this riddle gets unravelled in 2015.

The bullet cluster

The merging bullet cluster. A composite of an optical image (showing galaxies), an X-ray image (in red, showing the hot gas), and a map of the total mass (in blue, from gravitational lensing). Dark matter, making up most of the mass, has past straight through the collision without interacting. Credit: NASA/CXC/CfA/STScI/ESO/U.Arizona/M. Markevitch/D. Clowe

White lab coats, pink tutus and camouflage fatigues

In this post I contemplate the effects of stereotypes and biases. I hope that this will encourage you to examine these ideas too. I promise I’ll get back to more science soon.

Just over a week ago, I helped with an outreach event for year nine students. Some of the astrophysics PhD students and I ran an interactive lecture on gravity and its importance in astrophysics. These type of events are fun: you get to teach some physics to a (usually) enthusiastic audience, and hopefully inspire them to consider studying the subject. I also get to play with our Lycra Universe. I think it’s especially important to show students what a university environment is like and have them interact with real scientists. It is important to counter the stereotype that studying science means that you’ll spend all day in a lab wearing a white lab coat. (Although that would be cool. I’d want goggles too, and maybe a doomsday device).

This event was to promote the studying of STEM subjects. That’s science, technology, engineering and mathematics, because there’s nothing like an acronym to make things accessible. It is often argued that we need more people trained in STEM subjects for the economy, industry, or just so we can finally get pizza over the Internet. I like to encourage people to study these areas as I think it’s good to have a scientifically-literate population. Also, because science is awesome! The event was aimed specifically at encouraging a group who are under-represented at university-level STEM, namely girls.

There has been much written on gender and subject choice. I would recommend the Closing Doors report by the Institute of Physics. I will not attempt to unravel this subject. In all my experience, I have never noticed any difference in aptitude between genders. I don’t believe that the ability to pee standing up gives any advantage when studying physics—one could argue for a better understanding of parabolic motion, but anyone who has paid attention to the floor in the gents (I advise against this), knows this is demonstrably not the case. I assume the dominant factors are social pressures: a vicious circle of a subject becoming more associated with one gender, which makes people feel self-conscious or out of place studying it. Also: there are always bigots. It’s a real shame to be potentially missing out on capable scientists. There have been many attempts to try to counter this trend, to break the cycle—some of them truly awful.

Good arguments have been made that the gender segregation of toys pushes girls away from science and technology from an early age. (For some reason, there seems to be a ridiculous idea that women can only relate to things that are pink). It makes sense to me that if only boys get the chemistry sets and construction toys, then they are going to be more numerous in the STEM subjects. The fact that a few female LEGO scientists merits coverage in nation newspapers, the BBC, etc. shows something isn’t quite right.

We are all influenced by our childhoods, and this got me thinking: I know of negative impacts for women from these gender biases, what are they for men? If women are under-represented in engineering, maths and physics, then men must be under-represented somewhere else to balance things: namely English, biology (conspicuous amongst the STEM subjects) and languages. We are short of male teachers and nurses. It seems that men are pushed away from caring careers or those with emphasis on communication.

The lack of men in certain professions is a problem, although I would say less so than the continued under-representation of women at senior positions (say as professors, CEOs or members of government). I was about to relax, since I hadn’t uncovered yet another unconscious bias to add to the list. Then I checked the news. I don’t know what’s in the news when you’re reading this, but at the time it was conflict in Ukraine, Iraq and Israel–Palestine—I assume things are much better in the future? One thing that struck me was that the combatants in the photos were almost exclusively men. It then occurred to me that for every girl who plays with a ballerina doll, there is a boy who plays with an action figure with a weapon. I’m not as naive as to suggest it’s a simple as growing up to be exactly like your toys (I, regrettably, am neither a dinosaur nor a cuddly elephant), but perhaps it is worth keeping in the front of our mind what identities we associate with each gender and how we project these onto children. I don’t want to say that being a ballerina isn’t a good vocation or hobby, or that being a soldier is a bad career. (Curiously, I believe that some of the requirements to be a good ballet dancer or soldier overlap, say discipline, determination, physical fitness and, perhaps, empathy). However, I think it is dangerous if we raise girls who primarily aspire to be pretty, and boys who resolve conflict through violence (men are both more likely to be victims of homicide and suicide).

In conclusion, stereotypes can be damaging, be it that scientists are all socially-awkward comic-book geeks as in The Big Bang Theory, that men can’t talk about their feelings, or that women must be mothers. There is a balance between the genders: by assigning one quality to a particular gender, you can push the other away. Mathematical ability shouldn’t be masculine and compassion shouldn’t be feminine. This is not a new idea, but conveniently coincides with Emma Watson’s wonderful speech for the UN as part of the HeForShe campaign. Cultural biases might be more significant than you think, so give them some extra attention. Sexism hurts everyone, so let’s cut it out and all go play with some LEGO.

The Big Bang Theory

The Big Bang Theory‘s popularity has been credited with encouraging more students to take physics. The cast reflects traditional stereotypes: the men are physicists, an astronomer and an engineer, the women are two biologists and Penny.

How sport is like science

Athene Donald, Professor of Experimental Physics and soon-to-be Master of my old college, Churchill, recently blogged about how athletics resembles academia. She argued that both are hard careers: they require many years of training, and even then success is not guaranteed—not everyone will reach the top to become an Olympian or a Professor—there is a big element of luck too—a career can stall because of an injury or because of time invested in a study that eventually yields null results, and, conversely, a single big championship win or serendipitous discovery can land a comfortable position. These factors can make these career paths unappealing, but still most people who enter them do so because they love the area, and have a real talent for the field.

The Breakfast Club

As The Breakfast Club taught us, being into physics or sports can have similar pressures.

I find this analogy extremely appealing. There are many parallels. Both sports and academic careers are meritocratic and competitive. Most who enter them will not become rich—those who do, usually manage it by making use of their profile, either through product endorsement or through writing a book, say Stephen Hawking, or Michael Jordan (although he was still extremely well paid). Both fields have undisputed heavy-weights like Einstein or Muhammad Ali, and media superstars like Neil deGrasse Tyson or Anna Kournikova; both have inspirational figures who have overcome adversity, be they Jesse Owens or Emmy Noether, and idols whose personal lives you probably shouldn’t emulate, say Tiger Woods or Richard Feynman. However, I think the similarity can stretch beyond career paths.

Athene says that although she doesn’t participate in athletics, she does enjoy watching the sport. I’m sure many can empathise with that position. I think that this is similarly the case for research: many enjoy finding out about new discoveries or ideas, even though they don’t want to invest the time studying themselves. There are many excellent books and documentaries, many excellent communicators of research. (I shall be helping out at this year’s British Science Festival, which I’m sure will be packed with people keen to find out about current research.) However, there is undoubtedly more that could be done, both in terms of growing the market and improving the quality—reporting of science is notoriously bad. If you were to go into any pub in the country, I’d expect you’d be able to find someone to have an in-depth conversation with about how best to manage the national football team, despite them not being a professional footballer. Why not someone with similar opinions about research council funding? Can we make research as popular as sport?

Increasing engagement with and awareness of research is a popular subject, most research grants with have some mention of wider impact; however, I don’t think that this is the only goal. According to UK government research, many young students do enjoy science, they just don’t feel it is for them. The problem is that people think that science is too difficult. Given my previous ramblings, that’s perhaps understandable. However, that was for academic research; science is far broader than that! There are many careers outside the lab, and understanding science is useful even if that’s not your job, for example when discussing subjects like global warming or vaccination that affect us all. Coming back to our sports analogy, the situation is like children not wanting to play football because they won’t be a professional. It’s true that most people aren’t good enough to play for England (potentially including members of the current squad, depending upon who you ask in that pub), but that doesn’t mean you can’t enjoy a kick around, perhaps play for a local team at weekend, or even coach others. Playing sports regular keeps you physically fit, which is a good thing™; taking an interest in science (or language or literature or etceteras) keeps you mentally fit, also a good thing™.

Chocolate models

Chocolate is also a good thing™. However, neither Nobel Prizes nor Olympic Medals are made of chocolate, something I’m not sure that everyone appreciates. I’d make the gold Olympic models out of milk chocolate, silver out of white and bronze out of dark. The Nobel Prize for Medicine should contain nuts as an incentive to cure allergies; the Prize for Economics should be mint(ed) chocolate, the Peace Prize Swiss chocolate, the Chemistry Prize should contain popping candy, and the Physics Prize should be orange chocolate (that’s my favourite).

How to encourage more people to engage in science is a complicated problem. There’s no single solution, but it is something to work on. I would definitely prefer to live in a science-literate society. Stressing applications of science beyond pure research might be one avenue. I would also like to emphasis that it’s OK to find science (and maths) hard. Problem solving is difficult, like long-distance running, but if you practise, it does get easier. I can only vouch for one side of that simile from personal experience, but since I’m a theoretician, I’m happy enough to state that without direct experimental confirmation. I guess that means I should take my own advice and participate more myself: spend a little more time being physically active? Motivating myself is also a difficult problem.

The missing link for black holes

There has been some recent excitement about the claimed identification of a 400-solar-mass black hole. A team of scientists have recently published a letter in the journal Nature where they show how X-ray measurements of a source in the nearby galaxy M82 can be interpreted as originating from a black hole with mass of around 400 times the mass of the Sun—from now on I’ll use M_\odot as shorthand for the mass of the Sun (one solar mass). This particular X-ray source is peculiarly bright and has long been suspected to potentially be a black hole with a mass around 100 M_\odot to 1000 M_\odot. If the result is confirmed, then it is the first definite detection of an intermediate-mass black hole, or IMBH for short, but why is this exciting?

Mass of black holes

In principle, a black hole can have any mass. To form a black hole you just need to squeeze mass down into a small enough space. For the something the mass of the Earth, you need to squeeze down to a radius of about 9 mm and for something about the mass of the Sun, you need to squeeze to a radius of about 3 km. Black holes are pretty small! Most of the time, things don’t collapse to form black holes because they materials they are made of are more than strong enough to counterbalance their own gravity.


These innocent-looking marshmallows could collapse down to form black holes if they were squeezed down to a size of about 10−29 m. The only thing stopping this is the incredible strength of marshmallow when compared to gravity.

Stellar-mass black holes

Only very massive things, where gravitational forces are immense, collapse down to black holes. This happens when the most massive stars reach the end of their lifetimes. Stars are kept puffy because they are hot. They are made of plasma where all their constituent particles are happily whizzing around and bouncing into each other. This can continue to happen while the star is undergoing nuclear fusion which provides the energy to keep things hot. At some point this fuel runs out, and then the core of the star collapses. What happens next depends on the mass of the core. The least massive stars (like our own Sun) will collapse down to become white dwarfs. In white dwarfs, the force of gravity is balanced by electrons. Electrons are rather anti-social and dislike sharing the same space with each other (a concept known as the Pauli exclusion principle, which is a consequence of their exchange symmetry), hence they put up a bit of a fight when squeezed together. The electrons can balance the gravitational force for masses up to about 1.4 M_\odot, known as the Chandrasekhar mass. After that they get squeezed together with protons and we are left with a neutron star. Neutron stars are much like giant atomic nuclei. The force of gravity is now balanced by the neutrons who, like electrons, don’t like to share space, but are less easy to bully than the electrons. The maximum mass of a neutron star is not exactly known, but we think it’s somewhere between 2 M_\odot and 3 M_\odot. After this, nothing can resist gravity and you end up with a black hole of a few times the mass of the Sun.

Collapsing stars produce the imaginatively named stellar-mass black holes, as they are about the same mass as stars. Stars lose a lot of mass during their lifetime, so the mass of a newly born black hole is less than the original mass of the star that formed it. The maximum mass of stellar-mass black holes is determined by the maximum size of stars. We have good evidence for stellar-mass black holes, for example from looking at X-ray binaries, where we see a hot disc of material swirling around the black hole.

Massive black holes

We also have evidence for another class of black holes: massive black holes, MBHs to their friends, or, if trying to sound extra cool, supermassive black holes. These may be 10^5 M_\odot to 10^9 M_\odot. The strongest evidence comes from our own galaxy, where we can see stars in the centre of the galaxy orbiting something so small and heavy it can only be a black hole.

We think that there is an MBH at the centre of pretty much every galaxy, like there’s a hazelnut at the centre of a Ferrero Rocher (in this analogy, I guess the Nutella could be delicious dark matter). From the masses we’ve measured, the properties of these black holes is correlated with the properties of their surrounding galaxies: bigger galaxies have bigger MBHs. The most famous of these correlations is the M–sigma relation, between the mass of the black hole (M) and the velocity dispersion, the range of orbital speeds, of stars surrounding it (the Greek letter sigma, \sigma). These correlations tell us that the evolution of the galaxy and it’s central black hole are linked somehow, this could be just because of their shared history or through some extra feedback too.

MBHs can grow by accreting matter (swallowing up clouds of gas or stars that stray too close) or by merging with other MBHs (we know galaxies merge). The rather embarrassing problem, however, is that we don’t know what the MBHs have grown from. There are really huge MBHs already present in the early Universe (they power quasars), so MBHs must be able to grow quickly. Did they grow from regular stellar-mass black holes or some form of super black hole that formed from a giant star that doesn’t exist today? Did lots of stellar-mass black holes collide to form a seed or did material just accrete quickly? Did the initial black holes come from somewhere else other than stars, perhaps they are leftovers from the Big Bang? We don’t have the data to tell where MBHs came from yet (gravitational waves could be useful for this).

Intermediate-mass black holes

However MBHs grew, it is generally agreed that we should be able to find some intermediate-mass black holes: black holes which haven’t grown enough to become IMBHs. These might be found in dwarf galaxies, or maybe in globular clusters (giant collections of stars that formed together), perhaps even in the centre of galaxies orbiting an MBH. Finding some IMBHs will hopefully tell us about how MBHs formed (and so, possibly about how galaxies formed too).

IMBHs have proved elusive. They are difficult to spot compared to their bigger brothers and sisters. Not finding any might mean we’d need to rethink our ideas of how MBHs formed, and try to find a way for them to either be born about a million times the mass of the Sun, or be guaranteed to grow that big. The finding of the first IMBH tells us that things are more like common sense would dictate: black holes can come in the expected range of masses (phew!). We now need to identify some more to learn about their properties as a population.

In conclusion, black holes can come in a range of masses. We know about the smaller stellar-mass ones and the bigger massive black holes. We suspect that the bigger ones grow from smaller ones, and we now have some evidence for the existence of the hypothesised intermediate-mass black holes. Whatever their size though, black holes are awesome, and they shouldn’t worry about their weight.